Перевести страницу

Статьи

Подписаться на RSS

Популярные теги Все теги

Специальные системы вентиляции школьных зданий

Специальные системы вентиляции школьных зданий

М. Дж. Карпински,
член ASHRAE

girl

Помимо обычных классов, в школах, как правило, имеются специальные помещения, в которых проектируются особые системы отопления, вентиляции и кондиционирования воздуха (ОВК). К этим помещениям относятся исследовательские кабинеты и лаборатории с препараторскими комнатами, пищевые лаборатории, художественные студии, плавательные комплексы, мастерские, кухни.

Исследовательские лаборатории

Школьные исследовательские лаборатории включают лаборатории общего назначения, химические, физические и биологические кабинеты. В химических кабинетах предъявляются наиболее жесткие требования к системам вентиляции, так как в этих помещениях проводятся эксперименты с выделением дыма и испарениями вредных веществ на рабочих местах студентов, на демонстрационных столах и в вытяжных шкафах. Вытяжные шкафы могут располагаться также и в препараторских, смежных с лабораториями.

Системы ОВК должны проектироваться с учетом архитектурно-строительных решений. Эти системы предназначены для удаления газов, испарений и дыма из помещений, перемещения их за пределы здания и рассеивания в окружающем воздухе таким образом, чтобы предотвратить попадание вредных веществ в воздухозаборные отверстия. Правильно спроектированные системы ОВК обеспечивают безопасные условия воздушной среды на рабочих местах студентов. Кроме того, в лабораториях и препараторских необходимо поддерживать более низкое по сравнению с окружающими помещениями и коридорами давление воздуха. Как правило, лаборатории оборудуются системой общей вытяжной вентиляции и местными отсосами на рабочих местах. Управление вытяжными вентиляторами должно осуществляться непосредственно из обслуживаемых помещений.

Большинство химических лабораторий и препараторских обычно имеют один или два вытяжных шкафа, используемых периодически; для них рекомендуются местные отсосы с постоянным объемом удаляемого воздуха стандартного типа или с подмешиванием незагрязненного воздуха (типа «бай-пасс»). Преимущество отсосов типа «бай-пасс» заключается в поддержании постоянной скорости удаляемого воздуха во входном отверстии вытяжного шкафа при опускании регулирующей заслонки.

В препараторских комнатах могут находиться контейнеры с легко воспламеняющимися веществами, при этом система вентиляции должна предотвращать накопление в помещении пожароопасных и взрывоопасных испарений. Необходимая информация о проектировании систем вентиляции для таких помещений имеется в Стандарте 30 NFPA «Порядок работы с пожароопасными жидкостями».

Основные требования к проектированию систем ОВК для школьных химических лабораторий следующие:

  • Кратность воздухообмена должна находиться в пределах 6-10 л/час.
  • Размещение вытяжных отверстий в помещениях должно обеспечивать удаление вредных веществ с рабочих мест.
  • Вытяжные вентиляторы следует размещать в конце вытяжных воздуховодов (предпочтительно на кровле здания), чтобы воздуховоды, проложенные в здании, находились под разрежением.
  • Верхний конец вытяжных шахт должен находиться на высоте не менее 2 м над кровлей, а скорость выпуска удаляемого воздуха должна быть достаточно высокой, чтобы предотвращать попадание выбросов в открытые окна и в воздухозаборные отверстия.
  • Размещать воздуховыпускные отверстия следует на расстоянии не менее 3 м от воздухозаборных отверстий; для лучшей изоляции рекомендуется использовать зонты и колпаки.
  • В воздуховодах, удаляющих воздух из вытяжных шкафов, не допускается установка огнезадерживающих клапанов. Если указанные воздуховоды проходят через возгораемые перекрытия и (или) через несколько этажей, необходимо предусматривать устройства, препятствующие распространению пламени. Для этого в местах прохода воздуховодов сквозь перекрытия могут быть использованы негорючие вставки или обертывание воздуховодов негорючим листовым материалом. Следует руководствоваться местными нормативами по проектированию пожаробезопасных каналов и защите отверстий от распространения огня.
  • Как правило, системы пожарной сигнализации здания не должны отключать вытяжные вентиляторы. В случае возникновения пожара, эти вентиляторы должны продолжать работать.
  • Необходима установка контрольных приборов, сигнализирующих о прохождении воздуха через вытяжные шкафы.
  • Материалы для изготовления вытяжных воздуховодов и вентиляторов должны быть коррозионно-стойкими (нержавеющая сталь, неметаллические покрытия).
  • Не следует использовать зонты вместо вытяжных шкафов.
  • Размещать приточные отверстия следует таким образом, чтобы не нарушать циркуляцию воздуха вблизи вытяжных отверстий и не оказывать отрицательного воздействия на производительность вытяжных систем.
  • При расчете воздухообмена необходимо обеспечивать преобладание вытяжки над притоком, чтобы поддерживалось пониженное давление, препятствующее распространению вредностей за пределы обслуживаемого помещения.
Пищевые лаборатории и художественные студии

В пищевых лабораториях и в художественных студиях обычно возникают запахи, которые следует удалять. И хотя вещества, вызывающие эти запахи, не токсичны, следует не допускать их распространения в другие помещения.

В пищевых лабораториях обычно имеются рабочие места студентов, оборудованные плитой с духовкой. Кроме того, в них могут быть установлены демонстрационные столы с разделочными досками и другими приспособлениями. Для таких помещений рекомендуется общеобменная вентиляция с локальным регулированием. В зависимости от конструкции плиты и духовки возможна также установка укрытий того же типа, что используются в домашних кухнях. В этом случае вытяжные вентиляторы должны управляться с каждого рабочего места.

В художественных студиях часто устанавливаются печи для обжига керамики. Эти устройства являются источниками тепла, которое необходимо удалять из помещения студии. Для этого могут использоваться укрытия в виде зонтов или колпаков, устанавливаемых над печью. При правильном подборе размера укрытия и соответствующем расчете его воздушного режима, можно добиться эффективного удаления теплоизбытков. Необходимые данные для расчетов содержатся в «Руководстве по промышленной вентиляции», изданном Американской Конференцией по гигиене труда в промышленности.

Если в художественных студиях периодически используются краскораспылители, необходимо устраивать местные отсосы для удаления запахов из помещения. В тех случаях, когда распыление красок применяется постоянно и используются легко воспламеняющиеся вещества, следует руководствоваться указаниями Стандарта NFPA-33 «Распыление легко воспламеняющихся материалов».

Плавательные комплексы

Плавательные комплексы становятся все более популярными и используются не только школьниками, но и местными жителями. В плавательных комплексах имеются бассейны для оздоровительного и спортивного плавания, а также устройства для других водных процедур, в том числе установки для гидромассажа.

При проектировании систем вентиляции этих зданий наибольшее значение имеет контроль относительной влажности помещения. В холодном климате переувлажнение строительных конструкций может иметь катастрофические последствия. Наибольший ущерб причиняет коррозия металлических материалов, возникающая из-за конденсации влаги на поверхности, и замерзание влаги внутри несущих и ограждающих конструкций здания.

Рекомендуемые значения относительной влажности в помещении бассейнов составляют 50-60%. Более высокие значения относительной влажности приводят к конденсации влаги на поверхностях помещения, а более низкие значения создают ощущение дискомфорта для пловцов.

Примечания
  1. Если бассейн используется одновременно для оздоровительного и спортивного плавания, то при оздоровительном плавании температура воды 25 oC может показаться слишком низкой. Опыт показывает,что температура воды 27 oC и температура воздуха 28 oC представляют собой оптимальное сочетание параметров, подходящих как для оздоровительного, так и для спортивного плавания. Периодический нагрев и охлаждение воды при переходе от одного режима плавания к другому практически не используется, так как занимает слишком много времени.
  2. По данным справочника ASHRAE, приложения, гл. 4. для регулирования относительной влажности в помещении может быть использована система вентиляции с подачей до 100% наружного воздуха, однако наибольшее распространение получили системы с механическим осушением рециркуляционного воздуха в сочетании с энергосберегающими мероприятиями. Влагопоглощающие вещества также могут быть использованы для этих целей, однако высокая стоимость оборудования и высокая температура выпускаемого воздуха препятствует их массовому применению в плавательных комплексах.

При проектировании системы воздухораспределения для бассейнов необходимо принимать во внимание следующие условия: минимально возможное испарение воды с поверхности бассейна, обеспечение комфорта для пловцов, предотвращение конденсации влаги на внутренних поверхностях ограждений здания. Приточные струи не следует направлять на поверхность воды. Подвижность воздуха у водной поверхности не должна превышать 0,05 м/с, так как при более высокой скорости существенно возрастает испарение воды, ухудшается эффективность регулирования относительной влажности и возрастает потребление энергии системами ОВК. Скорость движения воздуха - у пола помещения вокруг бассейна и в зоне для прыжков в воду, должна быть в пределах 0,13 м/с, чтобы пловцы не испытывали неприятных ощущений от испарительного охлаждения.

Для защиты внутренних поверхностей ограждающих конструкций помещения от конденсации влаги можно использовать обдув этих поверхностей настильными струями приточного воздуха. Теплый и сухой приточный воздух, направляемый вдоль остекления, прогревает поверхность, препятствует конденсации водяного пара и высушивает брызги. При проектировании следует уделить особое внимание дверям и строительным конструкциям с большой поверхностью остекления. Целесообразно использовать подачу приточного воздуха подпольными каналами с выпуском вертикальными струями (снизу вверх) вдоль наружных ограждений. При этом высокие скорости выпуска воздуха не приводят к образованию сквозняков и не создают ощущения дискомфорта. Однако следует принимать меры, защищающие приточные решетки, расположенные на полу, от попадания воды. Забор рециркуляционного воздуха осуществляется из верхней зоны бассейна.

Если окна бассейна расположены высоко над полом, то для эффективной защиты от конденсации приточные устройства следует размещать в непосредственной близости от них. Наибольшую сложность представляет защита от конденсации влаги потолочных светильников и зенитных фонарей. Рекомендуется (по возможности) направлять приточный воздух в места установки светильников.

Общее указание по проектированию систем воздухораспределения может быть сформулировано следующим образом: приточные струи следует формировать настилающимися на внутренние поверхности тех ограждающих конструкций, температура которых может быть ниже точки росы воздуха помещения. Абсолютную влажность воздуха и, соответственно, температуру точки росы во всем объеме помещений плавательных комплексов можно с достаточной степенью точности считать одинаковой. В связи с этим нет необходимости использовать мероприятия по выравниванию параметров воздушной среды по высоте, применяемые обычно для высоких помещений большого объема.

Если в бассейнах есть помещения для зрителей, система воздухораспределения должна быть спроектирована таким образом, чтобы зрители не ощущали высокой влажности и запахов бассейна. Рекомендуется подача воздуха сверху с направлением от зрителей к бассейну и забор вытяжного воздуха в удаленной от зрителей зоне.

Устройства, требующие периодического обслуживания (клапаны, заслонки и пр.) должны быть размещены таким образом, чтобы доступ к ним не вызывал затруднений (т.е. над поверхностью воды эти устройства устанавливать не следует).

Кратность воздухообмена в помещении плавательных комплексов обычно составляет от 4 до 8 л/ч. Согласно стандарту ANCI/ASHRAE 62-1989 «Обеспечение допустимых параметров воздуха в помещениях системами вентиляции» минимально необходимый расход наружного воздуха должен составлять 2,5 л/с•кв.м в расчете на общую площадь бассейна, включающую пол и водную поверхность. Если наружный воздух используется для поддержания заданного уровня относительной влажности, его количество определяется расчетом. При этом полученное значение может превышать минимально необходимую величину, регламентируемую стандартом.

Расчет расхода наружного воздуха для поддержания заданного уровня относительной влажности в помещении

Расчет производится в два этапа. На первом этапе определяется количество испаряющейся влаги, на втором этапе - объем приточного наружного воздуха для ассимиляции влаговыделений.

Объем испарения рассчитывается по формуле:

Wp = 0.1A (Pw - Pa),

где
Wp - количество испаряющейся воды, л/ч (кг/с);
A - площадь поверхности испарения, кв. футов (кв. м);
Pa - давление насыщенного водяного пара при температуре точки росы воздуха помещения, мм рт. ст. (Па);
Pw - давление насыщенного водяного пара при температуре воды, мм рт. ст. (Па).

Минимальное количество наружного воздуха, необходимое для ассимиляции избыточной влаги, определяется по формуле:

Q = Wp / 60r (Wi - Wo),

где
Q - количество воздуха, куб. футов/мин (л/с);
r - плотность воздуха при нормальных условиях, 0,075 фунтов/куб.фут (1,204 кг/м3);
Wi - расчетное влагосодержание воздуха помещения, фунт/фунт (кг/кг);
Wo - расчетное влагосодержание наружного воздуха, фунт/фунт (кг/кг).

Уравнения составлены для бассейнов с нормальными условиями воздушной среды, где подвижность воздуха у поверхности воды находится в пределах 0,05-0,15 м/с, а удельная теплота парообразования при температуре воды бассейна составляет приблизительно 1000 BTU/фунт (2330 кДж/кг).

Министерством энергетики США опубликована серия документов и компьютерных программ в помощь проектировщикам для расчетов влаговыделений, определения необходимого объема вентиляционного воздуха для их ассимиляции и сравнения различных вариантов проектов с целью выбора оптимальных решений.

Поскольку в зданиях плавательных комплексов возможно переувлажнение строительных конструкций, проектировщики систем ОВК должны работать в тесном контакте с архитекторами при определении мероприятий по тепло- и влагоизоляции наружных ограждений.

При расчетных наружных условиях для зимнего периода изоляция ограждающих конструкций должна обеспечивать поддержание на их внутренней поверхности температуры более высокой, чем температура точки росы воздуха помещения.

При холодном климате рекомендуется делать пароизоляцию под наружной облицовкой ограждений. При этом влага, проникающая внутрь стен, будет конденсироваться в зоне с положительной температурой. На рис. 2 показана конструктивная схема стены с пароизоляцией. Конструкция окон должна предусматривать теплозащиту переплетов. Поскольку наиболее вероятным местом конденсации является поверхность оконных стекол, рекомендуется использовать окна с тройным остеклением.

Кухни

Школьные кухни могут быть различными: одни используются только для подогрева готовых обедов, другие работают на коммерческой основе и приготовление пищи осуществляется в полном объеме.

Главными элементами системы вентиляции кухонь являются местные отсосы от плит и духовок с соответствующей компенсацией удаляемого воздуха. Кроме того, могут быть местные отсосы от посудомоечных машин, водонагревателей и другого оборудования.

Кондиционирование воздуха в кухнях используется достаточно часто, в том числе и в северных странах. Однако заказчиков следует предупреждать о дополнительных затратах, связанных с обеспечением комфортных условий для персонала.

Проектировщик систем вентиляции может использовать для местных отсосов стандартные укрытия, отвечающие обычным требованиям, или укрытия специального типа по UL Standard 710. В таблице 2 приведены данные о нормативном количестве удаляемого воздуха. Укрытия, сконструированные по UL-710 и имеющие марку UL, рассчитаны на меньший объем удаляемого воздуха. Такие укрытия должны проектироваться применительно к кухонному оборудованию для каждого конкретного случая и монтироваться по инструкции изготовителя. Строительные нормативы обычно допускают некоторое уменьшение расчетного объема удаляемого воздуха, если испытания подтверждают эффективность улавливания выделяющихся вредностей.

Существует два основных типа укрытий для местных отсосов от жаровен и плит: колпаки и плоские зонты или навесы. Колпаки могут устанавливаться у стен или изолированно (одиночные или сдвоенные). Тип укрытий выбирается в зависимости от расположения кухонного оборудования и должен согласовываться с технологом. Обычно плоские навесы устанавливаются в тех случаях, когда малая высота помещения не позволяет использовать колпаки. Поскольку с точки зрения улавливания вредностей плоские навесы менее эффективны, их не рекомендуется использовать для больших жаровен.

Объем приточного воздуха для кухонь следует рассчитывать, исходя из условия поддержания в кухне более низкого давления по сравнению с окружающими помещениями. Расход приточного (наружного) воздуха, определенный для компенсации вытяжки (с учетом вышеуказанного ограничения), обычно превышает санитарную норму наружного воздуха для персонала кухни.

При отсутствии системы кондиционирования воздуха приточный воздух подается в верхнюю зону помещения через систему воздухораспределения. Приточные устройства должны быть расположены таким образом, чтобы не оказывать отрицательного влияния на работу местных отсосов.

Приточные устройства можно конструктивно совмещать с местным отсосом. Возможные способы подачи воздуха: горизонтально, вертикально сверху вниз, комбинация этих вариантов; кроме того, можно использовать укрытия типа «сокращенная циркуляция» (компенсационные). В последнем случае приточный воздух может подаваться подогретым или неподогретым, в зависимости от климата. При использовании компенсационных укрытий следует проконсультироваться с их изготовителем, так как количество компенсационного воздуха зависит от конструктивного исполнения укрытия. Использование укрытий компенсационного типа позволяет уменьшить общий объем воздуха, удаляемого из помещения.

Для подачи приточного воздуха в смежные с кухней обеденные залы может использоваться та же приточная установка, что и для кухни, а выпуск воздуха при этом осуществляется со стороны перегородки, разделяющей кухню и обеденный зал.

В кухнях, оборудованных кондиционерами, подача нагретого приточного воздуха производится горизонтально или сверху вниз с малой скоростью выпуска, а кондиционеры подают только охлажденный воздух.

Системы вытяжной вентиляции проектируются с учетом требований NFPA 96 и местных нормативов. Ниже приведены основные требования к системам удаления воздуха местными отсосами от жаровен и духовок, для более подробных указаний следует обращаться к вышеупомянутым нормативным документам.

Воздуховоды изготавливаются из углеродистой стали марки 16 или нержавеющей стали марки 18.

Все соединения элементов вытяжной сети должны быть сварными, влагонепроницаемыми.

Необходимо предусматривать технологическое отверстия и отверстия для очистки воздуховодов.

Для плоских элементов стандартом NFPA-96 не допускаются сварные соединения встык. Необходимо выполнять сварку внахлест или использовать фланцевые соединения.

Скорость воздуха в вытяжных воздуховодах должна быть не менее 7,6 м/с. Некоторые нормативные документы, например, стандарт BOCA Mechanical, вводят максимально допустимое значение скорости (11 м/с). Это ограничение связано с увеличением потерь давления при увеличении скорости.

Вытяжные вентиляторы должны устанавливаться в конце сети для того, чтобы большая часть соединений вытяжных воздуховодов находилась под разрежением.

Вытяжные вентиляторы, установленные на кровле, для выпуска воздуха должны иметь патрубок, поднятый над уровнем кровли на высоту не менее 1 м.

Минимально необходимые зазоры между воздуховодами и строительными конструкциями (сгораемыми, трудносгораемыми и несгораемыми) следует принимать, руководствуясь указаниями стандарта NFPA. Для уменьшения величины требуемых зазоров указанным стандартом допускается применение листовых материалов, изолирующих воздуховоды от строительных конструкций. При использовании этого способа необходимо руководствоваться данными предприятий - изготовителей изоляционных листовых материалов.

Стандартом NFPA-96 регламентируется минимально допустимое расстояние между воздуховыпускными и воздухозаборными отверстиями, расположенными на кровле и в наружных стенах. Кроме того, при определении мест выпуска удаляемого воздуха следует принимать во внимание преобладающее направление ветра.

В дополнение к вышеперечисленным условиям проектировщикам следует предусматривать средства регулирования работы местных отсосов и противопожарные мероприятия. Система автоматического регулирования должна поддерживать воздушный баланс помещения (отключать приточные системы при отключении вытяжных) и при срабатывании пожарной сигнализации перекрывать подачу электроэнергии и газа к кухонному оборудованию.

Вытяжная ветиляция при включении системы автоматического пожаротушения должна оставаться включенной. Приточная система также может работать до тех пор, пока не будет отключена встроенным детектором дыма. Такими детекторами снабжаются вентиляторы производительностью 940 л/с и более.

Обычно применяемые системы автоматического пожаротушения используют влажные или сухие химикаты. Новые системы пожаротушения для ресторанов следует проектировать с учетом требований UL-300. Процедура тестирования систем ОВК по стандарту UL-300 в большей мере, соответствует современной технологии приготовления еды в ресторанах, чем прежние стандарты. Конструктивные решения укрытий, приведенные в UL-300, предусматривают возможность встраивания системы пожаротушения. Во всех случаях при проектировании систем пожаротушения следует руководствоваться соответствующими разделами NFPA и местными нормативами.

Мастерские

В настоящее время в школьном производственном обучении вместо традиционной работы в столярных, слесарных и автомобильных мастерских существует тенденция уделения основного внимания ознакомлению учащихся с современными высокотехнологичными производствами. Этой работой школьники занимаются во время каникул, причем одни и те же помещения мастерских часто используются несколькими школами. Проектировщику следует ознакомиться со школьной программой производственного обучения и определить требования к системам ОВК для производственных помещений: пылеуборка, местные отсосы от сварочных аппаратов и станков, пневмосеть, боксы для установки краскопультов.

При проектировании системы вакуумной пылеуборки рекомендуется пользоваться материалами Американской конференции по гигиене труда в промышленности «Руководство по системам промышленной вентиляции» и данными заводов - изготовителей оборудования для этих систем. Воздуховоды этих систем допускается размещать как внутри, так и вне обслуживаемого помещения; для поддержания воздушного баланса помещения воздух после очистки от пыли может использоваться как рециркуляционный.

В «Руководстве по системам промышленной вентиляции» содержатся указания по выбору скоростей движения воздуха в воздуховодах систем пылеуборки для различных видов загрязнений, рекомендации по проектированию местных отсосов для оборудования мастерских и по конструктивным решениям сети воздуховодов. Кроме того, проектировщики могут пользоваться справочником ASHRAE 1995 - Приложения «Системы вытяжной вентиляции промышленных зданий» и ASHRAE 1997 - Основная часть «Проектирование систем вытяжной вентиляции промышленных зданий».

Помимо местных отсосов, в воздуховодах систем пылеудаления вблизи пола в местах скопления пыли и мелкого мусора следует предусматривать всасывающие ответстия.

Конструктивные решения по прокладке воздуховодов вытяжной вентиляции, связанной с местными отсосами от сварочных агрегатов и других станков, не имеют принципиальных отличий от рассмотренных выше для систем пылеуборки. Указания по проектированию этих систем также содержатся в названных справочниках и нормативах.

Литература
  1. Американская конференция по гигиене труда в промышленности; Промышленная вентиляция - практическое руководство. 23 издание, 1998 г., Цинциннати, ОН.
  2. Стандарт ASHRAE 62-1989 Обеспечение допустимых параметров микроклимата в помещениях системами вентиляции; ASHRAE Атланта, GA.
  3. Справочник ASHRAE Приложения; 1995 г., гл. 4, 26, 28; ASHRAE Атланта, GA.
  4. Справочник ASHRAE Основная часть; 1997 г., гл. 22, 23; ASHRAE Атланта, GA.
  5. NFPA-30 Правила работы с легковоспламеняющимися и сгораемыми жидкостями, издание 1996 г.; Национальная ассоциация по пожарной безопасности, Куинс, МА.
  6. NFPA-33 Руководство по работе с установками распыления легковоспламеняющихся и горючих материалов; издание 1995 г., NFPA.
  7. NFPA-45 Правила пожарной безопасности для химических лабораторий; издание 1995 г., NFPA.
  8. NFPA-96 Регулирование систем вентиляции и пожарная безопасность для кухонь предприятий общественного питания; издание 1994 г., NFPA.

Перепечатано из приложения к ASHRAE Journal, июнь 1998 г.
Перевод с английского О.П.Булычевой


Вентиляция, отопление и охлаждение зала ресторана

Вентиляция, отопление и охлаждение зала ресторана
Общие сведения

В ресторане, где во главу угла поставлены качество воздуха и тепловой комфорт, современные технологические решения обусловили результат, предлагаемый теперь посетителям в качестве модели для подражания, - результат, ставший возможным благодаря стремлению заказчика к интеграции в окружающую среду, а проектировщика к применению новейших технологических достижений.

Для кондиционирования микроклимата ресторанного зала применены напольные панели отопления-охлаждения и вентиляция вытесняющего типа.

К основным причинам, обусловившим такое решение, можно отнести:

  • целесообразность исключения перемешивания воздуха в объеме помещения, особенно когда многие посетители курят (по просьбе заказчика);
  • необходимость достижения круглогодичного комфорта, который может быть обеспечен правильным распределением нагрузки между панельной и воздушной системами и с учетом конвективных тепловых струй от внутренних источников;
  • стремление к экономии энергоресурсов при использовании эффекта расслоения внутреннего воздуха на две зоны, свойственное системам данного типа и предоставляющего возможность кондиционировать только нижнюю часть объема помещения.

Следует иметь в виду, что при вентиляции вытеснением приточный воздух подается в помещение снизу (см. рис. 1) с небольшой скоростью и температурой ниже температуры внутреннего воздуха. Таким образом нагретый и загрязненный воздух выталкивается вверх, а свежий и чистый занимает нижнюю зону помещения. Такой способ вентиляции организует формирование двухслойной стратификации воздуха, когда разделительный слой (температурное перекрытие) располагается на высоте от 110 до 180 см от пола.

В описываемом случае температурное перекрытие принято на высоте около 160 см, что объясняется ограниченностью высоты рабочей зоны, так как в зале ресторана большинство посетителей - это сидящие за обеденным столом люди. Медленное перемещение воздуха от воздухораспределителей к вытяжным решеткам, установленным в верхней части ресторанного зала, обеспечивается за счет тепла поверхностей, с которыми соприкасается воздушная масса (люди, стены, холодильники и проч.). Проект системы разработан таким образом, что конвективное движение, обусловленное теплом посетителей ресторана, уравновешено соответствующим расходом приточного воздуха, составляющим на одного человека около 45 м3/ч (12,5 л/с).

Во избежание дисбаланса между расходом приточного воздуха и скачкообразно изменяющейся нагрузкой (заполняемость ресторана значительно различается в зависимости от времени суток и дня недели) в системе используется автоматическое регулирование с помощью трехскоростного вентилятора (описание системы ступенчатого регулирования приводится ниже). Необходимость в повышении расхода воздуха по мере увеличения числа посетителей в обеденном зале вызвана стремлением поддерживать постоянную высоту температурного перекрытия, связанную с конвективным теплообменом посетителей, а также компенсировать соответствующие повышения температуры и влажности воздуха.

Следствием недостаточного притока воздуха могут стать неприятные шлейфы воздушной массы, образовавшейся из смеси чистого воздуха и загрязненного табачным дымом и запахами пищи. Чересчур интенсивный приток воздуха ведет к перерасходу энергоресурсов и создает дискомфорт из-за расширения зоны с повышенными подвижностями воздуха вокруг воздухораспределителей (повышенной считается скорость, превышающая или равная 0,2 - 0,3 м/с). В летний период температура воздуха на выходе из воздухораспределителя составляет около 20°С (при внутреннем с температурой 26°С и относительной влажностью 50 %).

20_2

Рис. 2. Расположение приточных воздухораспределителей и вытяжных решеток в помещении. Красным цветом выделены вытяжные воздуховоды (сверху), синим - приточные (внизу)

Рабочая разность температур между подаваемым и внутренним воздухом в 6°С обеспечивает компенсацию максимальной расчетной нагрузки, хорошую очистку воздуха в обеденном зале и практически полное отсутствие неприятных воздушных шлейфов. В зимний период при температуре внутреннего воздуха по сухому термометру 20°С и при его относительной влажности 40% приточная система используется исключительно для вентиляционных целей с параметрами притока, близкими к параметрам внутреннего. Это объясняется тем, что перегрев приточного воздуха приведет к уменьшению своей плотности по сравнению с плотностью внутреннего и вызовет мгновенный его подъем к вытяжным решеткам, что вредно вдвойне: во-первых, понапрасну расходуются энергоресурсы, во-вторых, перемешиваются нижний и верхний слои воздуха.

Отопление ресторана в зимний период целиком обеспечивается напольными панелями. Что касается совместной работы системы панельного отопления-охлаждения с вентиляционной системой, то, если не считать необходимости ограничивать влажность внутреннего воздуха во избежание образования конденсата на охлажденных панелях, между ними существует позитивное взаимодействие, в особенности на этапе летнего охлаждения.

На самом деле медленное движение воздуха, выходящего из воздухораспределителей на уровне пола, повышает эффективность теплообмена панели. Такое воздействие ощущается даже без сложной измерительной аппаратуры. В рассматриваемом ресторане производительность панели существенно выше, если в зале работает вентиляция. Отмечается увеличение мощности по сравнению с заложенными в проект 40 Вт/м2.


Архитектура системы

В состав проекта входят вентиляционная приточная система с воздухораспределителями для подачи в нижнюю зону и панельная система напольного отопления-охлаждения. В летний период их обслуживают две самостоятельные холодильные машины, одна предназначена для работы в более низком диапазоне температур (7-12°С), вторая - в более высоком (15-21°С), как показано на рисунке 3. Решение использовать раздельные холодильные установки для обслуживания системы панельного охлаждения и воздухоохладителя вентиляционной системы обусловлено тем, что для них нужна разная температура. Кроме того, эти системы имеют различные мощности и время запуска.

20_3

Рис. 3. Схема управления обслуживающими системами

Холодильная машина, предназначенная для центральной приточной установки, традиционно работающей с диапазоном температур от 7 до 12°С, не пригодна для непосредственного обслуживания панельной системы, в которой необходим диапазон 15-21°С.

Решить эту проблему можно было подмешиванием к холодной воде обратной воды из панельной системы. Однако решено было контуры холодоснабжения систем разделить, принимая во внимание следующие обстоятельства:

  • разное потребление мощности (мощность холодильного агрегата панелей на 1/3 меньше мощности машины для контура воздухоохладителя);
  • разное время запуска холодильных агрегатов (при низких нагрузках в межсезонье вполне возможно обеспечивать вентилирование без осушки приточного воздуха); разная продолжительность работы (панель в режиме охлаждения может быть задействована постоянно, в том числе ночью);
  • разный расход охлаждаемой воды в двух холодильных агрегатах, работающих в двух разных температурных диапазонах (агрегат с повышенным диапазоном температур охлаждает, естественно, больший расход воды).

Основные элементы вентиляционной установки: рекуперативный теплообменник перекрестного типа, регулирующие заслонки, рециркуляционный воздуховод, воздушный фильтр, воздухоохладитель, воздухонагреватель, приточный вентилятор, вытяжной вентилятор (см. рис. 4).

20_4

Рис. 4. Принципиальная схема вентиляционной установки

Сознательно было решено отказаться от установки зимнего увлажнителя.

Такое решение обусловлено климатическими характеристиками места строительства и возможностью небольшого увлажнения воздуха внутренними влаговыделениями внутри обеденного зала.

В летний период осушка воздуха осуществляется за счет охлаждения в воздухоохладителе до температуры 11°С (при максимальной нагрузке) и подается в помещение после нагрева в воздухонагревателе до температуры около 20°С (температура подачи в помещение).

Для ограничения энергозатрат летом в воздухонагревателе циркулирует вода, нагретая в конденсаторном блоке холодильной машины, обслуживающей напольное охлаждение, до температуры около 65°С с температурным перепадом подачи и возврата не менее 15°С. Зимой вода нагревается в конденсационном котле, утилизирующем теплоту конденсации водяных паров из продуктов сгорания. Таким образом обеспечивается коэффициент полезного действия не менее 104 % (рассчитанный по низшей теплоте сгорания при температуре возвращаемой в блок воды 50°С).

Тот же конденсационный котел в зимний период обеспечивает теплом и воздухонагреватель, и напольное отопление. Благодаря своей электронике автоматически переключаются расходы подаваемой в систему воды, причем приоритетом по отношению к панельному отоплению пользуется запрос воздухонагревателя.

В контур воздухонагревателя включен бак-аккумулятор, сокращающий число циклов вкл./выкл. теплогенератора. Было решено обойтись без системы непрерывного приготовления воды, имеющей высокую температуру, с последующим подмешиванием обратной. Таким образом, разработчики в полной мере использовали преимущества, предоставляемые тепловым насосом.

Регулирование

Рассматриваемая система рассчитана на частые изменения тепловой нагрузки при ограничении температурных колебаний и минимизации расходов энергоресурсов. С этой целью в качестве регуляторов использованы свободно программируемые контроллеры. Расход и температура подаваемого приточного воздуха регулируются одним регулятором в зависимости от температуры и влажности наружного и внутреннего воздуха, а также показаний датчика качества внутреннего воздуха, тогда как второй регулятор управляет напрямую работой панельного отопления-охлаждения. Три датчика непрерывно контролируют состояние среды в помещении, управляя посредством регуляторов работой холодильных агрегатов, теплогенератора и трех заслонок, расположенных в приточном, вытяжном и рециркуляционном воздуховодах.

Обе системы регулирования взаимодействуют в случаях, когда для исключения выпадения конденсата на напольных панелях требуется обеспечить осушку приточного воздуха. В остальных случаях системы работают отдельно друг от друга (например, только в режиме вентилирования с охлаждением или без него).

Для обеспечения максимально комфортных условий, помимо энтальпийных датчиков, в системе использован датчик качества воздуха, предназначенный для обнаружения загрязняющих веществ, типичных для помещений, где разрешено курить, в частности, СО2 и органических летучих соединений (ОЛС).

В зависимости от концентрации данных веществ в воздухе регуляторы приводят в действие приточный и вытяжной вентиляторы. Вентиляторы могут работать на одной из трех скоростей (1500, 1000, 750 об./мин.).

Особенности работы системы в летний периодНизкая нагрузка

В летний период, если нагрузка ресторана невелика, напольное панельное охлаждение не выключается, а вентиляционная система работает с минимальным расходом приточного и вытяжного воздуха при автоматически устанавливаемой низкой скорости вентиляторов.

В таком режиме небольшой расход воздуха обеспечивает достаточно быструю подстройку системы осушки приточного воздуха под изменения состояния среды в помещении, а также рост эффективности теплообмена системы панельного охлаждения.

Настроенная на работу с низкой нагрузкой, предназначенная для этого холодильная машина, обеспечивает охлаждение пола, потребляя немногим более 1 кВт электроэнергии. Хладоноситель для осушки приточного воздуха готовится другой холодильной машиной, в контуре которой имеется бак-аккумулятор для сокращения циклов вкл./выкл.

Теплоаккумулирующие охлаждаемые полы и массивные наружные и внутренние стены здания образуют своего рода инерционный энергетический маховик, идущий в ход в период повышенной нагрузки.

Высокая нагрузка

Когда число посетителей заведения начинает заметно расти (часы перерыва на обед в организациях и вечернее время), растут расходы воздуха, подаваемого в залы. Вначале подается нейтральный воздух (т.е. имеющий температуру и влажность, близкие к параметрам внутреннего), затем все более холодный - при максимальной расчетной нагрузке разность температур приточного и вытяжного воздуха составляет около 6°С.

В состав приточно-вытяжной вентиляционной установки входит перекрестный рекуператор тепла для использования остаточной энергии вытяжного воздуха, что позволяет снизить энергозатраты на обработку больших расходов приточного. При благоприятных погодных условиях (температура наружного воздуха не превышает температуру рециркуляции) заслонка байпаса узла обработки воздуха закрывается, и система работает на прямотоке без обработки приточного воздуха.

Датчик температуры в приточном воздуховоде непрерывно контролирует температуру воздуха на выходе из воздухораспределителей, которая не должна выходить за рамки 20°С. В этих условиях посетители чувствуют себя комфортно.

Запускается система утром - заслонки устанавливаются на полную рециркуляцию, включаются вентиляторы. Только когда качество воздуха неудовлетворительно (а утром такое случается очень редко), заслонки переключаются на частичный приток свежего воздуха вместе с запуском вентиляторов.

Особенности работы системы в зимний период

Принцип работы системы в зимний период весьма прост. Заведение отапливается исключительно напольной панельной системой с регулированием температуры воды в подающей магистрали. Помещение вентилируется нейтральным воздухом, расход приточного изменяется ступенчато в зависимости от качества воздуха в помещении. В залах ресторана поддерживается температура воздуха по сухому термометру, равная 20°С при 40 % относительной влажности, а температура приточного воздуха также поддерживается около 20°С.

Выбор воздухораспределителей

На рисунке 5 приведено расположение воздухораспределителей в рассматриваемом заведении (они обозначены цифрами от 1 до 6). При выборе модели воздухораспределителя и определении его типоразмера были приняты в расчет следующие параметры: форма и размеры ресторана, тепловая нагрузка залов, расположение столиков и, самое главное, зона повышенной подвижности воздуха вокруг воздухораспределителей.

20_5

Рис. 5. План помещения. Указаны приточный (синий) и вытяжной (красный) воздуховоды, места установки воздухораспределителей (обозначены цифрами от 1 до 6) и зоны повышенных скоростей воздуха вокруг них

Последний показатель считается чрезвычайно важным, поскольку определяет границы участка вокруг воздухораспределителей, где скорость воздуха достигает допустимого уровня. Для рассматриваемого ресторана были закуплены воздухораспределители, у которых зона с превышающей установленный предельный уровень (0,2 м/с) скоростью имела приемлемые размеры.

Воздухораспределители ресторанных залов оборудованы такими соплами, которые позволяют изменять геометрию приточного факела.

На рисунке 6 смоделирован характерный приточный факел на выходе из воздухораспределителя.

20_6Панели отопления-охлаждения

В панелях использованы трубы диаметром 14 мм, уложенные в змеевик с постоянным шагом 10 см. Укладка труб производилась в обычном порядке.

При этом особое внимание было обращено на надежность теплоизоляции трубопровода на участке вблизи коллектора (см. рис. 7).

20_7

Рис. 7. Схема раскладки труб в напольных панелях, установленных в ресторане

Это объясняется тем, что повышенная концентрация труб на участке вблизи коллектора может послужить причиной неуправляемого снижения температуры поверхности панели с последующим образованием конденсата.

Ко всему сказанному выше о регулировании работы панелей в летний период следует добавить, что температура холодной воды внутри панели постоянно поддерживается выше точки росы внутреннего воздуха, при этом температура в подающей магистрали изменяемая от 15 до 21°С с разностью между подающей и обратной около 5°С. Температура точки росы рассчитывается определенным узлом в соответствии с показаниями энтальпийного датчика, установленного в зале (зал 1). Температура поверхности пола непрерывно контролируется, чтобы, с одной стороны, осуществлять охлаждение зала, а с другой - не допускать образования нежелательного конденсата.

Основные технические характеристики
  • Холодопроизводительность холодильной машины для воздухоохладителя - 21,3 кВт
  • Холодопроизводительность холодильной машины для панелей - 6,3 кВт
  • Расход приточного воздуха - 2900 м3/ч (макс.)
  • Расход вытяжного воздуха - 2500 м3/ч (макс.)
  • Тепловая мощность конденсационного котла - 18 кВт

Практическое воплощение

Серьезные препятствия в реализации проекта были отмечены по ходу прокладки воздуховодов в стенах ресторанного зала. Работа осложнялась тем, что, помимо горизонтальных ответвлений воздуховодов, внутри несущих конструкций необходимо было проложить вертикальные, в том числе ответвления к горловинам воздухораспределителей. Последние были "утоплены" в несущую стену (крупные распределители на глубину около 47 см, мелкие - на 35 см), при этом несущая способность стены не ослаблена.

20_8

Рис. 8. Разрезы двух встроенных воздухораспределителей, использованных в рассматриваемом ресторане.

В ходе прокладки электропроводки и разводки сети управления системами пришлось решать проблемы, типичные для работ по реконструкции зданий, имеющих определенный возраст.

В частности, в рассматриваемом ресторане возведены сводчатые потолки, а толщина несущих стен на некоторых участках превышает 60 см. В этой связи целый ряд серьезных проблем удалось решить только при активном участии профессионального архитектора.

Что же касается системы регулирования, то следует подчеркнуть, что интеграция электронных узлов управления системой панельного отопления-охлаждения в пульт управления обслуживающей ее холодильной машины позволила значительно упростить электрическую схему контура и существенно сэкономить на сроках и условиях прокладки инфраструктуры системы.

^Заключение

Выполненная разработка и реализация проекта представляется достаточно непростой, однако весьма интересной. Несомненно, главным его достижением является то, что была "придумана" система, отличная от традиционного "пакета", отработанного и знакомого до мелочей со всеми достоинствами и недостатками, - пакета, привязка, оптимизация и раскладка которого, имея перед глазами расчетные параметры (смета расходов, показатели мощности узлов, скорости воздушных потоков), производятся в кратчайшие сроки. Конечно, хороший профессионал расчеты и такого "пакета" проверит и перепроверит, но за спиной у него всегда будут тысячи уже реализованных подобных проектов и уверенность в непогрешимости общей идеи. Впрочем, справедливости ради следует сказать, что с технической точки зрения, когда "ознакомительный" барьер преодолен, разработанный проект особых сложностей не вызывает. В концептуальном плане разработчики применяли известные принципы расчета узлов за исключением, быть может, конфигурации и сопряжения различных электронных систем, не предназначенных для работы в сложной интегрированной системе подобной той, что описана в статье. Когда были сняты трудности начального периода (во многом благодаря дальновидности и чуткости руководства, а также высокому профессионализму работников), окончательный расчет системы и реализация проекта не заняли много времени. В свете сказанного можно утверждать, что установленная система позволила обеспечить хорошие комфортные условия для посетителей заведения как в летний, так и в зимний периоды во всех залах ресторана с улучшенной очисткой воздуха в зонах обслуживания. Несмотря на то, что везде в ресторане посетителям разрешено курить, до сих пор не было отмечено ни одного случая подмешивания загрязненного воздуха к нижней зоне заведения, поскольку столбики табачного дыма свободно уходят в зону вытяжки, не испытывая практически никаких сторонних возмущений. В частности, особенно в летний период, в ресторане ощущаются приятные освежающие конвективные потоки, обтекающие сидящих за столиками и удаляющие дым и испарения.

В завершение добавим, что реализованный проект позволил добиться подтвержденной существенной экономии энергоресурсов в сравнении с традиционными системами кондиционирования в основном благодаря вытесняющей вентиляции, применению теплового рекуператора, ступенчатому регулированию скорости вентиляторов, регулированию угла раскрытия струи в соответствии с нагрузкой и, наконец, использованию при нагреве воды конденсатора холодильной машины для напольных панелей в летнее время и конденсационного котла в зимний период. В результате заказчик оценил проект более чем удовлетворительно.

Перепечатано из журнала RCI № 3/96,
перевод с итальянского С.Н.Булекова

Вентиляция предприятий сферы обслуживания

Вентиляция предприятий сферы обслуживания

Для предприятий сферы обслуживания, в частности, гостиниц, административных площадей, торговых центров требуется постоянно действующая вентиляция. При этом принципиальные схемы могут быть различны в зависимости от назначения помещений.

В каждом конкретном случае вентиляция имеет свои особенности.

Гостиницы

Почти все гостиницы оборудуются вентиляционно-конвекторными системами с подачей первичного воздуха для климатизации номеров. Чаще всего вентиляционно-конвекторная система устанавливается в коробе, оборудуемом за входной дверью. Вентиляционно-конвекторная установка формирует смесь из полностью наружного и рециркуляционного воздуха, которая подается в номер через прямоугольную горловину. Рециркуляционный воздух отводится через воздухозаборник, как правило, смонтированный в нижней плоскости короба.

При этом воздух отбирается на рециркуляцию не полностью: часть воздуха отводится через ванную комнату расположенным там вытяжным вентилятором, соединенным с отводящим воздуховодом.

Объемы вытяжного воздуха всегда меньше объемов приточного наружного воздуха, что создает в номерах небольшое избыточное давление. Объемы приточного наружного воздуха, необходимые для каждого конкретного номера, должны определяться либо на основе действующих в данном регионе норм и правил, либо рекомендаций местных органов санитарного контроля, либо положений стандарта UNI 10399. Вытяжные короба, удаляющие воздух из ванных комнат, выводятся на кровлю. В больших гостиницах их довольно много, что может создавать серьезные проблемы с выбором места для размещения устройств забора приточного наружного воздуха либо агрегатов первичной обработки наружного воздуха. Следует категорически исключить попадание отводимых масс загрязненного воздуха в обслуживаемую среду через заборники наружного воздуха.

Для ресторанных залов, конференц-залов и пр. рекомендуется применять приточно-рециркуляционные системы. В этом случае система подает в помещение смесь наружного и рециркуляционного воздуха. Смешивание производится внутри воздухообрабатывающего агрегата, который при этом отводит часть отработанного воздуха рециркуляции посредством системы взаимодействующих заслонок. И в этом случае тоже объемы подаваемого наружного воздуха будут больше объемов отводимого воздуха, вследствие чего в помещении поддерживается небольшое избыточное давление. Соответственно, определение требуемых объемов наружного воздуха производится по упомянутому выше принципу.


Предприятия общественного питания

Вентиляция на предприятиях общественного питания должна отвечать следующим требованиям:

  • обеспечивать отвод дымовых газов, запахов и пр.;
  • предотвращать чрезмерный рост относительной влажности;
  • поддерживать температуру среды на уровне, комфортном для посетителей;
  • поддерживать пониженное давление по отношению к смежным помещениям, предотвращая распространение запахов.

Как правило, производится около 20-30 обменов объемов воздуха в час либо из расчета 60-90 м3/ч на квадратный метр площади. Для поддержания пониженного давления на требуемом уровне необходимо, чтобы объем подаваемого наружного воздуха не превышал 85 % объема отводимой массы. На кухне в зимний период общепринятой считается температура 22-24°С, летом она может повышаться до 25-30°С. Зимой следует регулировать температуру подаваемого наружного воздуха, чтобы избежать образования конденсата, холодных сквозняков и т. п.

В большинстве случаев вытяжка на кухне обеспечивается через вытяжной зонт. Обычный вытяжной зонт представляет собой короб, который закрепляется над кухонной плитой и выведен наружу через воздуховод, где смонтирован вытяжной вентилятор. Хотя большая часть дымов отводится наружу, незначительная часть дымов остается в помещении и растворяется поступающим сменным воздухом. От эффективности работы вытяжного короба зависят объемы сменного воздуха, требующегося для поддержания концентрации в воздухе загрязняющих газов на должном уровне. Объемы воздуха тем больше, чем ниже эффективность.

Существуют и другие факторы, связанные с особенностями установки, влияющие на объемы требующегося свежего воздуха: высота установки зонта от пола, площадь покрытия пространства над кухонной плитой, наличие или отсутствие боковых стенок и т. д. На эффективность влияет скорость воздуха: обычно она принимается порядка 0,15-0,3 м/с в зависимости от размеров зонта. С учетом значительных объемов сменяемого воздуха традиционные вытяжки имеют высокий уровень энергопотребления.

Административные помещения

В большинстве случаев климатизация административных помещений в Италии обеспечивается вентиляционно-конвекторными системами, на две или четыре трубы плюс первичный воздух. В таких установках вентиляция обеспечивается наружным воздухом. Объемы требующегося сменного воздуха определяются региональными нормативными актами, рекомендациями ASL либо нормативами UNI 10339. В помещениях без отдельных кабинетов (open space) используются полностью воздушные установки.

Вентиляция туалетных комнат осуществляется, естественно, отдельно от остальных по отдельным воздуховодам на крышные вытяжные зонты.

Торговые центры

Обычно установленные здесь системы полностью воздушные. По многоэтажным торговым сооружениям следует иметь в виду два обстоятельства:

  1. Чем выше этаж, тем ниже посещаемость. Например, на четвертом этаже покупателей существенно меньше, чем на первом. Отсюда необходимость спроектировать такую систему вентиляции, которая учитывала бы меньшую плотность посетителей.
  2. Как правило, на верхних этажах, особенно за рубежом, для привлечения покупателей размещают рестораны и закусочные. Наличие закусочных и ресторанов ставит ряд специфических проблем по вентиляции и отводу отработанной воздушной массы. В многоэтажных сооружениях такого рода с широким открытым пространством типа атриума посередине могут возникнуть определенные сложности с вентиляцией, разработка которой требует высокой квалификации инженерно-технических специалистов.
Современные системы вентиляции

Вышеописанные случаи - лишь некоторые из множества возможных, которые могут встретиться в сфере услуг. Они, однако, представляются достаточно показательными в описании общих принципов организации вентиляции в зданиях, оснащенных системами климатизации. И хотя, как уже говорилось, системы климатизации, чаще всего встречающиеся в Италии, имеют весьма узкую типологию, в последнее время все более широкое применение находят новые воздухораспределительные системы, имеющие свои особенности в плане обеспечения вентиляции. Это распределительные системы и в меньшей степени системы с тканевыми или ПВХ воздуховодами.

Распределительные системы

Распределительные воздушные диффузоры были разработаны с целью обеспечения эффективного обеззараживания среды промышленных или торговых предприятий. Они представляют собой конструкцию из перфорированного листа, чаще всего вертикальную, различной конфигурации, устанавливаемую напольно непосредственно в помещении. Конструкция может быть отдельно стоящей или встроенной в стену или колонну. Правда, последние модели уже можно устанавливать и настенно.

Вверху или внизу, в зависимости от конструкции, диффузоры оборудуются круглой муфтой, через которую они соединяются с воздуховодами. Воздух распределяется через перфорированные стенки конструкции в горизонтальном направлении с раскрытием струи 90, 180 или 3600 на малой скорости (0,25 м/с), имеет температуру чуть ниже, чем в помещении. Воздух, поступивший из диффузора, нагреваясь от соприкосновения с теплыми поверхностями машин, компьютеров и пр., устремляется вверх, унося с собой загрязняющие вещества, образующиеся в нижней части помещения. Данный процесс приводит к образованию на определенной высоте пограничного разделительного слоя: снизу поддерживается требуемая чистота и температура воздуха, сверху накапливается отработанная воздушная масса, имеющая повышенную температуру.

Высоту расположения пограничного слоя можно регулировать. Она, помимо прочего, определяется характеристиками самого диффузора, объемами поступающего свежего воздуха, его температурой и т. п. Применение распределительных диффузоров позволяет использовать толкающие усилия первичной воздушной массы, которая, не смешиваясь с воздухом среды, словно поршень перемещает его вверх за пограничный слой. Распределительная вентиляция может осуществляться только в том случае, если свежий воздух имеет температуру ниже температуры воздуха среды. Если воздух будет теплее, то произойдет простое перемешивание обеих масс.

В промышленных помещениях температура подаваемого свежего воздуха должна поддерживаться на уровне 16°С и никак не должна опускаться ниже 15°С. В торговых помещениях температура должна быть более теплой - примерно 18°С. Соответственно, температурный дифференциал составит 2-5°С для торговли и 6-8°С для промышленности. Вертикальный температурный градиент около 1,5°С/м.

Мощность распределительных диффузоров, имеющихся на рынке, варьируется от 100 до 5 000 м3/ч в зависимости от модели. Отвод отработанной воздушной массы осуществляется через воздухозаборные решетки, установленные в верхней части помещения. Как правило, система работает полностью на наружном воздухе. Воздушный поток, выйдя из диффузора, движется вначале по типу каскада, но вскоре переходит на движение по плоскости и, образуя однородный слой по всей обслуживаемой площади, обеспечивает эффективную воздушную промывку помещения.

Системы с тканевыми или ПВХ воздуховодами-диффузорами

Воздуховоды-диффузоры из ткани или ПВХ появились недавно. Они гигиеничны, функциональны и пригодны к использованию в самых разных помещениях.

Они имеют ряд любопытных преимуществ перед традиционными воздуховодами из листового металла. Главные из них: незначительная масса, умеренная стоимость, быстрота и простота установки, возможность фильтрации воздуха (для тканевых воздуховодов), равномерность распределения воздуха, возможность стирки, широкий диапазон рабочих температур.

Тканевые воздуховоды изготавливаются из различных тканей типа полиэстер, номекс, тревира и моноволоконный нейлон. Такие воздуховоды обеспечивают равномерное распределение воздуха по всей площади и длине помещения. В помещении не образуются сквозняки. Кроме того, материал, из которого выполнены воздуховоды, обеспечивает выраженный эффект фильтрации, что способствует улучшенной очистке воздуха. Некоторые модели диффузоров изготавливаются из ткани со специальной пропиткой с калиброванными отверстиями, выполняющими функции высоко-индуктивных подающих форсунок.

Воздуховоды из ПВХ также оснащены отверстиями, которые выполняют роль форсунок для подачи воздуха и расположены в соответствии с проектными требованиями. Все эти воздуховоды позволяют осуществлять установку систем низкого давления (значения статического давления от 40 до 350 Па). Номинальные диаметры предлагаемых воздуховодов - от 100 до 1 600 мм. Воздуховоды-диффузоры имеют цилиндрическую или полуцилиндрическую форму. Первые подвешиваются различными способами под потолок. Полуцилиндрические диффузоры крепятся непосредственно к потолку специальными крепежными профилями. Воздуховоды-диффузоры из ПВХ пригодны к использованию на зоотехнических, животноводческих предприятиях и пр. и обеспечивают отопление и вентиляцию.

Забор наружного воздуха

Для хорошей вентиляции отбор наружного воздуха является определяющим.

Наружный воздух следует забирать из такой точки (или точек), где можно гарантированно утверждать, что воздух не содержит загрязняющих веществ: выхлопных газов транспортных средств, отводов отработанных воздушных масс, тумана, образуемого охлаждающими башнями, бытовых и промышленных дымоотводов и пр. Выбор места установки воздухозабора требует детального ознакомления с площадкой, внимательного изучения данных по розе ветров и определенного опыта работы с аналогичными проектами. Некоторые нормативные акты устанавливают минимальные значения высоты установки воздухозаборных решеток (не ниже, чем 3 м от поверхности земли во дворах и 6 м на неогражденных территориях). Те же нормативы требуют, чтобы воздухозабор устанавливался на безопасном расстоянии от дымоотводов и других источников загрязнения.

Забор воздуха может производиться и через настенные решетки, если под стеной размещается воздухообрабатывающая подстанция. Воздух можно забирать и через специально придуманные элементы конструкции, если не хочется нарушать общую эстетику фасада сооружения. Такие решения обеспечивают большую гибкость в определении наиболее защищенной точки для установки воздухозабора.

Перепечатано с сокращениями из журнала GT.
Перевод с итальянского С. Н. Булекова

Естественная вентиляция жилых зданий

Естественная вентиляция жилых зданий

Е.Х. Китайцева, Е.Г. Малявина, доценты МГСУ

35_0

От эффективности работы вентиляции зависит качество воздуха, которым мы дышим. Недооценка влияния воздухообмена на состояние воздушной среды в жилых квартирах приводит к существенному ухудшению самочувствия проживающих в них людей.

Нормативы воздухообмена жилых зданий

СНиП 2.08.01-89 "Жилые здания" рекомендует следующую схему воздухообмена квартир: наружный воздух поступает через открытые форточки жилых комнат и удаляется через вытяжные решетки, установленные в кухнях, ванных комнатах и туалетах.

Воздухообмен квартиры должен быть не менее одной из двух величин: суммарной нормы вытяжки из туалетов, ванных комнат и кухни, которая в зависимости от типа кухонной плиты составляет 110 - 140 м3/ч, или нормы притока, равной 3 м3/ч на каждый м2 жилой площади. В типовых квартирах, как правило, первый вариант нормы оказывается решающим, в индивидуальном - второй. Так как этот вариант нормы для больших квартир приводит к неоправданно завышенным расходам вентиляционного воздуха, в московских региональных нормах МГСН 3.01-96 "Жилые здания" предусматривается воздухообмен жилых комнат с расходом 30 м3/ч на одного человека. В большинстве случаев проектными организациями эта норма трактуется как 30 м3/ч на одну комнату. В результате в больших муниципальных (не элитных) квартирах воздухообмен может быть занижен.

Способы вытяжной вентиляции

В жилых зданиях массовой застройки традиционно выполняется естественная вытяжная вентиляция. В начале массового жилищного строительства применялась вентиляция с индивидуальными каналами от каждой вытяжной решетки, которые соединялись с вытяжной шахтой непосредственно или через сборный канал на чердаке. В зданиях до четырех этажей эта схема применяется до сих пор. В высоких домах для экономии места через каждые четыре - пять этажей несколько вертикальных каналов объединялось одним горизонтальным, от которого далее воздух направлялся к шахте по одному вертикальному каналу.

В настоящее время принципиальным решением систем естественной вытяжной вентиляции многоэтажных зданий является схема, включающая в себя вертикальный сборный канал - "ствол" - с боковыми ответвлениями - "спутниками". Воздух поступает в боковое ответвление через вытяжное отверстие, расположенное в кухне, ванной комнате или туалете и, как правило, в междуэтажном перекрытии над следующим этажом перепускается в магистральный сборный канал. Такая схема значительно компактнее системы с индивидуальными каналами, может быть аэродинамически устойчивой и отвечает требованиям противопожарной безопасности.

Каждая вертикаль квартир может иметь два "ствола": по одному осуществляется транзит воздуха из кухонь, по другому - из туалетов и ванных комнат. Допускается использовать один "ствол" для вентиляции кухонь и сантехкабин при условии, что место присоединения боковых ответвлений к сборному каналу в одном уровне должно быть выше уровня обслуживаемого помещения не менее чем на 2 м. Один или два последних этажа часто имеют индивидуальные каналы, не связанные с общим магистральным "стволом". Это происходит, если конструктивно невозможно подсоединить верхние боковые каналы к магистральному по общей схеме.

В типовых зданиях основным элементом системы естественной вентиляции является поэтажный вентблок. В зданиях, строящихся по индивидуальным проектам, вытяжные воздуховоды чаще всего выполняются в металле.

Вентблок включает в себя участок магистрального канала одного или нескольких боковых ответвлений, а также отверстие, соединяющее вентблок с обслуживаемым помещением. Сейчас боковые ответвления подключаются к магистральному каналу через 1 этаж, тогда как более ранние решения предусматривали подключение через 2 - 3 и даже через 5 этажей. Междуэтажный стык вентблоков является одним из самых ненадежных мест системы вытяжной вентиляции. Для его герметизации до сих пор иногда используется цементный раствор, укладываемый на месте по верхнему торцу нижележащего блока. При установке следующего блока раствор выдавливается и частично перекрывает сечение вентиляционных каналов, вследствие чего меняется их характеристика сопротивления. Кроме того, отмечались случаи негерметичной заделки стыка между блоками. Все это приводит не только к нежелательному перераспределению воздушных потоков, но и к перетеканию воздуха через вентиляционную сеть из одних квартир в другие. Использование специальных герметиков все же приводит к желаемому результату в условиях трудоемкости операции заделки при труднодоступности шва.

В целях сокращения теплопотерь через потолок верхнего этажа и для повышения температуры на его внутренней поверхности большинство типовых проектов многоэтажных зданий предусматривает устройство "теплого чердака" высотой около 1,9 м. В него поступает воздух из нескольких сборных вертикальных каналов, что делает чердак общим горизонтальным участком системы вентиляции. Удаление воздуха из чердачного помещения осуществляется через одну на каждую секцию дома вытяжную шахту, устье которой в соответствии со СНиП "Жилые здания" располагается на 4,5 м выше перекрытия над последним этажом.

При этом вытяжной воздух на чердаке не должен остывать, в противном случае увеличивается его плотность, что приводит к опрокидыванию циркуляции или снижению расхода вытяжки. У пола чердака над вентблоком устраивается оголовок, внутри которого, как правило, подсоединяются боковые каналы последнего этажа к магистральному. При выходе из оголовка в "стволе" воздух движется с высокой скоростью, поэтому к нему за счет эжекции подсасывается вытяжной воздух из боковых каналов последнего этажа.

Так как одни и те же вентблоки используются в зданиях от 10 до 25 этажей, то для 10 - 12-этажного здания скорость воздуха в магистральном канале при выходе на "теплый чердак" недостаточна для эжекции воздуха из бокового ответвления верхнего этажа. В результате этого, при отсутствии ветра или при ветре, направленном на противоположный для рассматриваемой квартиры фасад, нередки случаи опрокидывания циркуляции и задувания вытяжного воздуха других квартир в квартиры последнего этажа.

Расчетным для естественной вентиляции является режим открытых форточек при температуре наружного воздуха +5°С и безветренной погоде. При понижении температуры наружного воздуха тяга увеличивается, и считается, что проветривание квартир только улучшается. Рассчитывается система изолированно от здания. В то же время расход удаляемого системой воздуха является всего лишь одной составляющей воздушного баланса квартиры, в котором кроме него значимую роль могут играть расходы воздуха, инфильтрующегося или эксфильтрующегося через окна и поступающего или выходящего из квартиры через входную дверь. При разных погодных условиях и направлениях ветра, открытых или закрытых форточках составляющие этого баланса перераспределяются.

Кроме конструктивных решений самой системы и погодных условий - температуры и ветра - на работу естественной вентиляции оказывают влияние высота здания, планировка квартиры, ее связь с лестнично-лифтовым узлом, размеры и воздухопроницаемость окон и входных в квартиру дверей. Поэтому нормы плотности и размеров этих ограждений тоже следует считать имеющими отношение к вентиляции, как и рекомендации по планировке квартир.

Воздушная среда в квартире будет лучше, если квартира обеспечена сквозным или угловым проветриванием. Обязательной эта норма по СНиП "Жилые здания" является только для зданий, проектируемых для III и IV климатических районов. Однако в настоящее время и для средней полосы России архитекторы стараются размещать в здании квартиры так, чтобы они удовлетворяли этому условию.

Требования к входным дверям и окнам

К входным дверям в квартиры СНиП'ом "Строительная теплотехника" предъявляется требование высокой герметичности, обеспечивающей воздухопроницаемость не более 1,5 кг/ч·м2, что практически должно отсечь квартиру от лестнично-лифтовой шахты. В реальных условиях добиться требуемой плотности квартирных дверей удается далеко не всегда. На основании многочисленных исследований, проводимых в 80-х годах ЦНИИЭП инженерного оборудования, МНИИТЭП'ом, известно, что в зависимости от степени уплотнения притворов дверей значения их аэродинамической характеристики сопротивления отличаются почти в 6 раз. Неплотность квартирных дверей порождает проблему перетекания отработанного воздуха из квартир нижних этажей по лестничной клетке в квартиры верхних этажей, в результате чего даже при хорошо работающей вытяжной вентиляции приток свежего воздуха значительно сокращается. В зданиях с односторонним расположением квартир эта проблема усугубляется. Схема формирования воздушных потоков в многоэтажном здании с неплотными квартирными дверями показана на рис. 1. Одним из способов борьбы с перетеканием воздуха через лестничную клетку и лифтовую шахту является устройство поэтажных коридоров или холлов, имеющих дверь, отделяющую лестнично-лифтовый узел от квартир. Однако такое решение при неплотных квартирных дверях усиливает горизонтальное перетекание воздуха из односторонних квартир, выходящих на наветренный фасад, в квартиры заветренной ориентации.

35_1

Воздухопроницаемость окон жилых зданий по СНиП "Строительная теплотехника" не должна превышать 5 кг/ч·м2 для пластиковых и алюминиевых окон, 6 кг/ч·м2 - для деревянных. Их размеры, исходя из норм освещенности, определяются СНиП "Жилые здания", ограничивая отношение площади световых проемов всех жилых комнат и кухонь квартиры к площади пола этих помещений величиной не более 1:5,5.

При естественной вытяжной вентиляции окна играют роль приточных устройств. С одной стороны малая воздухопроницаемость окон приводит к нежелательному сокращению воздухообмена, а с другой - к экономии теплоты на подогрев инфильтрационного воздуха. При недостаточной инфильтрации вентиляция осуществляется через открытые форточки. Невозможность отрегулировать положение створок форточек вынуждает жильцов иногда использовать их только для кратковременного проветривания помещений даже при ощутимой духоте в квартире.

Рис. 1. Формирование воздушных потоков в многоэтажном здании


Приточные устройства

Альтернативным вариантом неорганизованного притока являются приточные устройства различных конструкций, установленные непосредственно в наружных ограждениях. Рациональное размещение приточных устройств в сочетании с возможностью регулировать расход приточного воздуха позволяет считать их установку достаточно перспективной.

Натурные исследования и многочисленные расчеты воздушного режима здания позволили выявить общие тенденции изменения составляющих воздушного баланса квартир при изменении погодных условий для различных зданий.


При понижении температуры наружного воздуха увеличивается доля гравитационной составляющей в разности давления снаружи и внутри жилого дома, что приводит к увеличению расходов инфильтрации через окна на всех этажах здания. Более существенно это увеличение сказывается на нижних этажах здания.

Увеличение скорости ветра при неизменной температуре наружного воздуха вызывает увеличение давления только на наветренном фасаде здания. Наиболее сильно изменение скорости ветра влияет на перепады давлений верхних этажей высоких зданий. Скорость и направление ветра оказывают более сильное воздействие на распределение воздушных потоков в системе вентиляции и расходы инфильтрации чем температура наружного воздуха. Изменение температуры наружного воздуха от -15°С до -30°С приводит к такому же увеличению воздухообмена в квартире как и увеличение скорости ветра от 3 до 3,6 м/с. Возрастание скорости ветра не сказывается на расходе воздуха, удаляемого из квартиры заветренного фасада, однако при плохих входных дверях приток в них уменьшается через окна и увеличивается через входные двери. Влияние гравитационного давления, ветра, планировки, сопротивления воздухопроницанию внутренних и наружных ограждающих конструкций для зданий повышенной этажности выражено более резко, чем в зданиях малой и средней этажности.

35_3

Рис. 3. Схема регулируемого приточного клапана, устанавливаемого в стену

  1. Регулировочная ручка
  2. Крышка из пластика на основе сополимера акрилонитрила, бутадиена и стирола
  3. Фильтр PPI-15
  4. Узел регулировки
  5. Корпус из пластика на основе сополимера акрилонитрила, бутадиена и стирола
  6. Прокладка из термопластичной пластмассы и резины
  7. Впускной воздушный канал диаметром 133/125 из полиэтилена высокой плотности
  8. Шумоглушитель из минеральной ваты
  9. Наружная решетка US-AV из формованного алюминия, снабженная сеткой для предотвращения попадания насекомых

В связи с установкой в здании плотных окон устройство только вытяжной системы оказывается неэффективным. Поэтому для подачи притока в квартиры используются как различные устройства (специальные аэроматы в окнах, имеющие довольно большое аэродинамическое сопротивление и не пропускающие шум с улицы (рис. 2), приточные клапаны в наружных стенах (рис. 3), так и проектируется механическая приточная вентиляция.

За рубежом получили распространение в жилищном строительстве механические системы вытяжной вентиляции, особенно для зданий повышенной этажности. Эти системы отличает устойчивая работа во все периоды года. Наличие малошумных и надежных в работе крышных вентиляторов (аналогичными вентиляторами оборудуются и шахты мусоропровода) сделало такие системы достаточно массовыми. Для притока воздуха в оконных переплетах устанавливаются, как правило, аэроматы.

К сожалению отечественный опыт применения общих для здания или стояка систем механической вентиляции связан с рядом проблем, о чем свидетельствовал пример эксплуатации в Москве десятков 22-этажных зданий серии И-700А. По состоянию воздушной среды в свое время они были признаны аварийными. Следствием конструктивных и монтажных дефектов, а также плохой эксплуатации (неработающие вентиляторы) является недостаточное удаление воздуха в целом из всех квартир и перетекание его из одних квартир по неработающей системе в другие. Отмечены и другие недостатки, связанные с плохой герметичностью систем и сложностью их монтажной регулировки.

В лучшем положении, с точки зрения эксплуатации вентиляторов, находятся квартиры с индивидуальными вентиляторами. К ним относятся квартиры ряда типовых зданий, где на последних этажах в индивидуальные вытяжные каналы устанавливаются небольшие осевые вентиляторы.

Большое число нареканий на работу систем естественной вентиляции сделало правомерным вопрос: а может ли такая система работать хорошо при различных погодных условиях? Ответ на этот вопрос было решено получить методом математического моделирования путем совместного рассмотрения воздушного режима всех помещений здания с системой вентиляции, позволяющим выявить достоверную качественную и количественную картину распределения воздушных потоков в здании и системе вентиляции.

Пример расчета

Для исследования было выбрано 11-этажное одноподъездное здание, в котором все квартиры имеют угловое проветривание. Два последних этажа занимают двухуровневые квартиры. Площади окон и их воздухопроницаемость в здании соответствуют нормам так же как и воздухопроницаемость дверей (воздухопроницаемость окон 1-го этажа равнялась 6 кг/ч·м2, а дверей - 1,5 кг/ч·м2). В лестничной клетке на всех этажах имеются окна. В каждой квартире расположено два "ствола" систем естественной вытяжной вентиляции, выполненной в металле. Все системы вентиляции были приняты такими, как они рассчитаны проектной организацией. Магистральные каналы предусмотрены одного диаметра по высоте. Диаметры боковых ответвлений также выполнены одинаковыми. Для боковых ответвлений подобраны диафрагмы, выравнивающие расходы вытяжного воздуха по этажам. Высота шахты над полом верхнего технического этажа возвышается на 4 м.

Расчетом определялись расходы воздуха, составляющие воздушный баланс каждой квартиры при различных наружных температурах, скорости ветра и при открытых и закрытых форточках.

Кроме основного вышеописанного варианта, были рассмотрены варианты с квартирными дверями, соответствующими воздухопроницаемости 15 кг/ч·м2 при разности давлений в 10 Па и с окнами, обеспечивающими воздухопроницаемость 10 кг/ч·м2 на первом этаже при наружной температуре -26°С.

Результаты расчета для квартиры с требуемым расходом вытяжки 120 м3/ч·м2 представлены на

Свидетельствует о том, что при нормативных окнах и дверях и закрытых форточках расходы удаляемого через вытяжную вентиляцию воздуха практически равны расходам инфильтрационного воздуха в течение всего отопительного сезона при ветре и при безветрии. Через квартирные двери практически нет движения воздуха (все двери работают на приток с расходом 0,5 - 3 м3/ч·м2). Через окна наветренного и заветренного фасадов наблюдается инфильтрация. Расходы на верхнем этаже относятся к двухуровневой квартире, что и объясняет увеличенные значения расходов. Видно, что вентиляция работает достаточно равномерно, но при закрытых окнах нормы воздухообмена не выполняются даже при температуре наружного воздуха -26°С и лобовом ветре 4 м/с на один из фасадов квартиры.

На рис. 4б показано изменение расходов воздуха того же варианта ограждений в здании, но при открытых форточках. Двери по-прежнему изолируют квартиры всех этажей от лестничной клетки. При +5°С и безветрии воздухообмен квартир близок к нормативному с небольшим перерасходом на первых этажах (кривые 3). При температуре наружного воздуха -26°С и ветре 4 м/с воздухообмен превышает нормативный в 2,5 - 2,9 раза. Причем форточки наветренного фасада (кривая 1н) работают на приток, а бокового - на вытяжку (кривая 1б). Система вентиляции удаляет воздух с большим перерасходом. На этом же рисунке показаны расходы воздуха в теплый период года (температура наружного воздуха по параметрам А). Разность между температурами наружного и внутреннего воздуха 3°С. При ветре 3 м/с через окна одного фасада воздух поступает (кривая 5н), через окна другого - удаляется (кривая 5б). Воздухообмен достаточен. При безветрии (или при заветренном фасаде) все окна компенсируют вытяжку, которая составляет от 35 до 50% нормы (кривые 4).

Рисунки 4в и 4г иллюстрируют те же режимы, что и рисунки 4а и 4б, но при дверях с увеличенной воздухопроницаемостью. Видно, что вентиляция работает по-прежнему устойчиво. При закрытых форточках перетекание воздуха через квартирные двери незначительно, при открытых - в нижних этажах воздух уходит через двери в лестничную клетку, в верхних - поступает в квартиры. На рис. 4г расходы воздуха через двери относятся к вариантам 1 и 5. В вариантах 3 и 4 расходы воздуха через двери незначительны.

Варианты окон и дверей повышенной воздухопроницаемости при закрытых форточках приведены на рис. 4д. Расчеты показывают, что при воздухопроницаемых окнах инфильтрация обеспечивает вентиляционную норму воздуха только в самый холодный период года.

Заключение

В квартирах с двухсторонней ориентацией естественная вентиляция может работать хорошо большую часть года, если она правильно рассчитана и смонтирована. В жаркую погоду только воздействие ветра может обеспечить требуемый воздухообмен.

Современные нормы воздухопроницания окон заставляют задуматься о специальных мероприятиях по обеспечению притока наружного воздуха в квартиры.

Значительного улучшения воздушного режима жилых зданий можно добиться, если воздухопроницаемость квартирных дверей приблизить к нормативной. С одной стороны, норму воздухопроницаемости можно было бы даже несколько повысить, а с другой, необходимо дать подход к расчету требуемого сопротивления воздухопроницанию квартирных дверей. Сейчас невозможно подобрать двери, соответствующие норме, для зданий различной этажности и планировки с учетом климатических факторов.

Вентиляция помещений многоэтажных жилых зданий

Вентиляция помещений многоэтажных жилых зданий

В настоящее время за рубежом для вентиляции помещений многоэтажных зданий используются три системы вентиляции:

  • механическая вентиляция;
  • естественная вентиляция;
  • естественная вентиляция с использованием механических средств (приточных и вытяжных устройств).

Для устройства системы естественной вентиляции с применением механических средств имеется ассортимент технически совместимого оборудования (такое оборудование предлагает, в частности, французская компания "Астато").

I. Отверстия для притока воздухаpic1_1 pic1_2

Данные приточные отверстия обладают следующими характеристиками:

  • являются саморегулирующимися, что позволяет обеспечить одинаковый приток воздуха при разнице давления внутри и снаружи здания от 0 до 100 Па;
  • выполняют функцию обратного клапана, что позволяет избежать возникновения или усиления ветра в квартире, выходящей на две стороны здания. Это также позволяет избежать изменения направления тяги в вентиляционных шахтах, что может привести к нарушению удаления продуктов горения;
  • бесшумны благодаря звукоизолирующему кожуху, рассчитанному на 36 децибел.


Были разработаны три типа приточных отверстий расчитаных на 22, 30 и 45 м3/ч.

II. Вытяжные отверстия двойного действияpic2_1pic2_2pic2_3

Эти отверстия являются саморегулирующимися отверстиями двойного действия и предназначены для установки на вентиляционных шахтах влажных помещений.

Они могут быть использованы:

  • в естественной системе вентиляции;
  • в естественной системе вентиляции с применением дополнительного вытяжного вентилятора;

Существует два типа вытяжных отверстий:

  • для туалетов и ванных комнат;
  • для кухонь (с дополнительной заслонкой в вентиляционной шахте, которая открывается вручную, что позволяет увеличивать расход воздуха, и закрывается автоматически при помощи таймера).

Оба типа вытяжных отверстий являются саморегулирующимися, т. е. автоматически регулируют расход при понижении давления в вентиляционной шахте в пределах от 0 до 40 Па.

Благодаря способности вытяжного отверстия автоматически регулировать расход воздуха, независимо от перепада давления, существующего по обеим его сторонам, оно позволяет обеспечивать равномерность потоков воздуха во всем здании.

III. Вытяжные устройства-дефлекторы1. Статический дефлектор, предназначенный для естественной вентиляции.

1

pic3_1

 2

pic3_2

 3

pic3_3

 4

pic3_4

Дефлектор установлен на крыше на выходе вытяжного воздуховода и под воздействием ветра создает область пониженного давления в вытяжном воздуховоде для того, чтобы обеспечивать минимальный расход воздуха. Таким образом, расход отработанного воздуха всегда зависит от атмосферных условий.

 

Эта система не требует применения никаких механических средств, т. к. воздухообмен обеспечивается за счет:

  • подъемной силы, пропорциональной, с одной стороны, разнице плотности между удаляемым и наружным воздухом, с другой стороны высоте шахты;
  • одновременного воздействия ветра на выходную часть вентиляционной шахты и на фасады здания;
  • теплоизоляции воздуховода.
2. Дополнительный вытяжной вентилятор, предназначенный для системы естественной вентиляции с применением механических средств.pic4_1 pic4_2

Принцип применения - тот же, что и у естественной системы вентиляции, но расход воздуха может быть увеличен в определенные часы или при определенной температуре наружного воздуха при помощи дополнительного механического средства, а именно одного двигателя с крыльчаткой, подключенного к блоку питания, который включается при помощи таймера и датчика температуры.

Вентилятор может быть установлен на любом индивидуальном или коллективном воздуховоде, действующем независимо от других, или объединенных при помощи вытяжки. Объединение воздуховодов возможно только в том случае, когда они используются по одному и тому же назначению. Запрещается объединять воздуховоды различного назначения, например, для вентиляции и для удаления продуктов горения.

pic3_10pic3_9pic3_8Особенности представленной системы вентиляции
  • может быть использована на существующих воздуховодах;
  • позволяет снизить давление на 10/35 Па, что соответствует требованиям эксплуатации газовых приборов, подключенных к магистральному газопроводу;
  • позволяет легко отрегулировать приточно-вытяжную вентиляцию при помощи вытяжных отверстий двойного действия (обеспечить однородные потоки воздуха в здании в целом);
  • бесшумна в эксплуатации (скорость движения воздуха в воздуховодах порядка 2 м/с);
  • не создает сквозняков (приточные отверстия - саморегулирующиеся, действуют по принципу обратного клапана);
  • имеется прибор контроля температуры газовой колонки, который позволяет отключить котел в случае нарушений в работе, что обеспечивает дополнительную безопасность.

Материалы для статьи были представлены М. А. Малаховым,

Тепловой комфорт и эффективность систем вентиляции для кухонь предприятий общественного питания

Тепловой комфорт и эффективность систем вентиляции для кухонь предприятий общественного питания

Ж. С. Пеккинен,
член ASHRAE

povar

Сведения об авторе:
Пеккинен - директор исследовательского отдела фирмы Халтон (Глазго, штат Кентукки). Степень магистра в области технических наук получил в Технологическом Университете г. Хельсинки (Финляндия). Член Финской Ассоциации отопления, сантехники и кондиционирования воздуха, Общества инженеров-теплотехников Финляндии.

Предлагаемый метод вентиляции кухонь повышает степень теплового комфорта, улучшает эффективность вентиляции и способствует повышению производительности труда.

Проектирование вентиляционных систем для кухонь предприятий общественного питания - одна из наиболее актуальных инженерных задач в этой области.

Большое количество загрязняющих веществ, выделяющихся при приготовлении пищи, вместе с избыточными конвективными и лучистыми тепловыделениями создает тяжелую обстановку для персонала. К проектировщикам и производителям вентиляционных установок предъявляется требование создания комфортных условий труда при использовании современного технологического оборудования кухонь.

Системы вентиляции кухонь

Основное назначение системы вентиляции кухни - предотвратить распространение запахов и загрязнения воздуха, возникающих при приготовлении пищи. Другая задача заключается в ассимиляции тепловыделений от кухонного оборудования.

Теоретически наиболее совершенной была бы система вентиляции с полной изоляцией источника выделения вредных веществ, но осуществить это практически невозможно.

Конвективный воздушный поток от кухонного оборудования распространяется снизу вверх, при этом к восходящей струе подмешивается окружающий воздух. Для уменьшения объема удаляемого воздуха вытяжные устройства (зонты, укрытия) должны располагаться как можно ниже над плитой. Однако в большинстве строительных нормативов содержится требование размещения масляных фильтров на определенном расстоянии от нагретой поверхности плиты. Величина этого расстояния разнится в зависимости от типа кухонного оборудования. Это привело к тому, что определилась стандартная высота установки вытяжного зонта над поверхностью чистого пола - 2 м (6 футов, 6 дюймов); при этом во всех случаях соблюдаются нормативные ограничения.

Тепловой режим помещения оказывает влияние на производительность труда работников. При повышении температуры в помещении обнаруживается снижение производительности труда и нарушение условий безопасности, что, в свою очередь, непосредственно влияет на рентабельность предприятия.

Указанные обстоятельства являются определяющими при проектировании систем вентиляции кухонь.

Типы укрытий

Первые укрытия были выполнены просто как расширения на концах вытяжных воздуховодов. Однако при наличии поперечных сдувающих потоков и сквозняков, обычных для кухонь, они работали неэффективно. Тогда для локализации загрязнений и тепловыделений стали увеличивать объем удаляемого воздуха. Соответствующие требования зафиксированы в действующих стандартах. Например, для пристенных укрытий объем удаляемого воздуха должен составлять 508 л/с на кв.м., для отдельно установленных - 762 л/с на кв.м..

Вместе с тем увеличение объема удаляемого воздуха означает увеличение объема приточного (кондиционированного) воздуха. Для того чтобы этого избежать, было разработано укрытие «с сокращенной циркуляцией» (компенсационного типа), в котором рециркуляционный воздух в количестве 70-80% объема вытяжки возвращается в зону действия отсоса. Однако, к сожалению, указанный метод не решает проблемы ассимиляции избыточных тепловыделений.

Дальнейшие исследования, как будет показано ниже, привели к созданию укрытия принципиально иного типа. В новом укрытии используется небольшое количество компенсационного воздуха (10-15% объема вытяжки) только для локализации восходящего конвективного потока и предотвращения бокового (поперечного) сдувания. В укрытиях типа «сокращенная циркуляция» объем компенсационного воздуха составляет 70-80% объема удаляемого воздуха. В укрытии нового типа локализующий поток использован только для повышения эффективности укрытия с точки зрения улавливания вредных веществ и не компенсирует объем вытяжки.

На рис. 1 показано традиционное укрытие типа «сокращенная циркуляция». Укрытие нового типа представлено на рис. 2. Различия между ними очевидны.

ris1 ris2

Рис. 1. Традиционное вытяжное устройство с "сокращенной циркуляцией"

Рис. 2. Новый тип вытяжного устройства

Расчет любого укрытия основан на том, что восходящий конвективный поток от источника загрязнения формируется под влиянием тепловой мощности и типа кухонного оборудования. При этом зависимость от объема удаляемого воздуха практически отсутствует. Таким образом, уменьшение «чистой» вытяжки путем увеличения объема компенсационного воздуха не приводит к повышению эффективности локализации вредных веществ.

Критерии комфорта для кухонь

В некоторых странах установлены предельно допустимые значения определенных параметров микроклимата кухонь. Например, в германском стандарте VDI Standard 2052 (DIN 1946) указано, что подвижность воздуха в рабочей зоне на расстоянии 91 см (3 фута) от кухонного оборудования не должна превышать 0,5 м/с. В этом стандарте определяется также базовое расчетное значение температуры воздуха в помещении - 28С (83F). Эта величина совпадает с принятой в США расчетной температурой внутреннего воздуха для кухонь. Позднее Всемирной организацией по стандартизации (ISO) был опубликован нормативный документ, имеющий отношение к тепловому режиму помещений. В этом документе принята концепция оценки теплового микроклимата путем определения допустимого процента людей, испытывающих дискомфорт (PPD), и допустимого среднего значения субъективного ощущения комфорта (PMV).

Субъективное ощущение комфорта определяется человеком в баллах по шкале от -3 (холодно) до +3 (жарко). Значение «0» соответствует ощущению комфорта. Величина PPD определяет, какой процент людей, находящихся в помещении, будет неудовлетворен тепловым режимом. В этой концепции принимаются во внимание различные параметры микроклимата помещения: подвижность воздуха, температура, влажность и другие.

Влияние способа подачи приточного воздуха

Способ подачи и распределения приточного воздуха оказывает влияние на эффективность вытяжных устройств. В разных строительных нормативах указывается, что приточные струи не должны ухудшать эффективность отсосов. Практически этого не всегда удается избежать, если используются воздухораспределители с активным смешением приточной струи и окружающего воздуха. В этом случае воздух подается с высокой скоростью в ограниченное пространство, что может привести к разрушению всасывающего воздушного потока вблизи вытяжных устройств.

Приточный воздух может подаваться в помещение кухни двумя способами: с высокой скоростью при активном смешении или с низкой скоростью при слабом либо умеренном смешении. В последнем случае степень перемешивания приточной струи с окружающим воздухом зависит от типа воздухораспределителя.

При полном смешении не имеет смысла повышать эффективность локализации вредных выделений вытяжными устройствами, так как все, что выделяется при приготовлении пищи, полностью и равномерно перемешивается с приточным воздухом. Очевидно, это противоречит нормативным требованиям и никогда не допускается на практике. Кроме того, как уже отмечалось, приточная струя может оказывать отрицательное воздействие на циркуляцию удаляемого воздуха вблизи укрытия.

Другой возможный способ воздухораспределения связан с использованием эффекта температурного расслоения. Здесь охлажденный приточный воздух подается с низкой скоростью в рабочую зону. В этом случае свежий воздух попадает именно туда, где он необходим. При низкой скорости выпуска приточного воздуха не охлаждается кухонное оборудование и не нарушается циркуляция вблизи вытяжных устройств. В соответствии с физическими законами, охлажденный воздух вытесняет из нижней (рабочей) зоны нагретый воздух помещения.

Проверка эффективности вентиляции

Было проведено исследование влияния размещения приточных устройств с низкой скоростью выпуска на эффективность вытяжки. Исследования проводились в кухне, приспособленной для экспериментов; при этом использовался способ подмешивания к воздуху специального газа-детектора и производились замеры его концентрации.

Газ выпускался на уровне, соответствующем высоте кухонного оборудования. Эффективность вентиляции определялась как соотношение концентрации газа в вытяжном воздуховоде и в рабочей зоне. Измерения проводились в 3 точках рабочей зоны, причем одна из точек соответствовала месту вдыхания воздуха поваром у плиты.

Формула для вычисления эффективности вентиляции:

E = Ce / Cbz,

где
E - эффективность вентиляции,
Ce - концентрация вредных веществ в удаляемом воздухе;
Cbz - средняя концентрация вредных веществ в зоне дыхания.

Результаты исследования эффективности вентиляцииris3 ris4

Рис. 3. Напольный воздухораспределитель с горизонтальным выпуском воздуха

Рис. 4. Воздухораспределители, установленные на высоте 2.4 м над полом с выпуском воздуха сверху вниз.

Наиболее эффективным оказалось размещение приточного устройства на полу с горизонтальным выпуском воздуха (рис. 3). Однако в этом случае следовало принимать во внимание температурный градиент, т.е. значительный перепад температуры на уровне пола и на уровне головы человека, вызывающий ощущение дискомфорта.

Размещение воздухораспределителя на высоте 2,4 м (8 футов) над полом с направлением выпуска воздуха сверху вниз оказалось менее эффективным, но все же намного лучше, чем подача воздуха с активным смешением (рис. 4). При подаче воздуха сверху вниз к приточной струе частично подмешивался окружающий воздух, более теплый и загрязненный. Это несколько ухудшало эффективность вентиляции по сравнению с первым вариантом, но при этом температурный градиент не был столь значительным. Имеется также дополнительное преимущество размещения воздухораспределителя в верхней зоне над рабочим местом повара (рядом с вытяжным зонтом). Оно заключается в том, что приточный воздух охлаждает верхнюю часть фигуры человека, находящуюся под воздействием теплового излучения. При этом подвижность воздуха не столь велика, чтобы вызвать ощущение дискомфорта, но достаточна для локального охлаждения.

Тестирование теплового комфорта

Изучение влияния локального охлаждения на тепловой комфорт проводилось с использованием анализатора параметров микроклимата помещения. Исследовалось приточное устройство с горизонтальной подачей и низкой скоростью выпуска воздуха. В воздухораспределителе имелось приспособление для изменения направления выпуска воздуха, кроме того, была возможность прямого обдува головы человека через 2 специальных патрубка.

Результаты исследования показали, что наилучший результат достигается при наклонной подаче воздуха сверху вниз под небольшим углом к горизонтали. При этом количество людей, удовлетворенных состоянием микроклимата, достигало 50%, в то время как при строго горизонтальной подаче эта величина составляла 25%. При открывании патрубков для обдува головы процентная доля людей, признающих условия комфортными, возрастала до 75%.

Выводы

На формирование восходящих конвективных потоков не оказывает влияния расход вытяжного воздуха, поэтому объем воздуха, удаляемого местным отсосом, должен лишь незначительно превышать объем конвективной струи от источника выделения вредных веществ. Однако для ассимиляции теплоизбытков кратность воздухообмена должна быть больше.

Как показали результаты исследований, способ подачи и распределения воздуха оказывает существенное влияние на эффективность вентиляции и тепловой комфорт, следовательно, на производительность труда работников.

При воздухораспределении с низкой скоростью выпуска воздуха и использованием эффекта температурного расслоения температурные условия помещения становятся лучше, чем при подаче приточного воздуха с активным смешением. Кроме того, использование локального воздушного охлаждения с выпуском обдувающей струи вблизи местного отсоса улучшает показатели теплового комфорта.

^Литература
  1. BOCA 1993 National Mechanical Code. Country Club Hills, Illinois; Building Officials & Code Administration International.
  2. VDI 1984.Standard 2052, Ventilation Equiipment for Kitchens. Dusseldorf, Germany; Vrein Deutscher Ingenierure Richtlinien.
  3. ISO, 1984. International Standard 7730, Moderate Thermal Environments - Determination of PMV and PPD Ranges and Specification of the Conditions for Thermal Comfort Criteria, Switzerland; International Organisation for Standardisation.

Перепечатано из журнала ASHRAE, июль, 1993 г.
Перевод с английского О.П. Булычевой

Эксплуатация и техническое обслуживание крышных кондиционеров

Эксплуатация и техническое обслуживание крышных кондиционеров

David Houghton, 
проф., инженер, член ASHRAE

Сведения об авторе:
Проф., инженер Дэвид Хотон - инженер-консультант в г. Боулдер, штат Колорадо (США), специализирующийся на проектировании энергоэффективных систем зданий. Г-н Хотон имеет степень бакалавра гражданского строительства от Калифорнийского университета в г. Беркли и является аттестованным менеджером по энергетике (Certified Energy Manager).

Применение крышных кондиционеров

Заберитесь на крышу нежилого здания, и вы, вероятно, обнаружите агрегатированный кондиционер, подобный тому, что изображен нарис. 1. В США такие устройства обеспечивают охлаждение в 49% нежилых помещений.1 Хотя они сравнительно долговечны, им зачастую не уделяют достаточного внимания, что необходимо для эффективного и результативного функционирования.

worker1

Рис. 1. Хотя крышные агрегаты относительно долговечны, им зачастую не уделяют достаточного внимания, что необходимо для эффективного и результативного функционирования

Мощность охлаждения, которую обеспечивают крышные кондиционеры, обычно составляет 17-70 кВт. В некоторых нежилых зданиях применяют более крупные агрегаты - стандартных типоразмеров или изготовленные по специальному заказу 70-351 кВт, более мелкие агрегаты, попадающие в категорию оборудования для жилых помещений 3-7 кВт, либо сплит-системы, в которых функции разделены между блоками, находящимися внутри и вне помещений. В состав большинства устройств входит встроенный газовый нагреватель, резистивный электронагреватель или предусмотрена функция теплового насоса. В данной статье речь идет об оборудовании для охлаждения и кондиционирования воздуха, используемом в агрегатах, которые монтируют на крышах зданий.

Затраты на эксплуатацию обычного 35 кВт крышного агрегата составляют примерно 2000 долларов США (далее везде "долл.") в год, а на его замену - 10000 долл. Реализация мероприятий по техническому обслуживанию, рекомендуемых в этой статье, в пересчете на год обходится очень недорого, предоставляя взамен такие преимущества, как снижение эксплуатационных затрат, повышение комфорта для пользователей и удлинение срока службы оборудования.


Резервы усовершенствования

Крышные кондиционеры должны выдерживать воздействие лучистой теплоты, высоких температур окружающего воздуха, листьев, пыли, насекомых, пыльцы, дождя, града, снега и даже молний. Во многих случаях за их эксплуатацию на площадке никто не отвечает, так что на них обращают внимание не раньше, чем они сломаются. Как показывают натурные измерения кпд крышных агрегатов, их рабочие характеристики существенно уступают номинальным показателям, которые указывают в каталогах. При выполнении проекта по изучению рабочих характеристик крышных агрегатов в штате Миссисипи было обнаружено, что у двух 35 кВт агрегатов с номинальным кпд EER=9,0 на самом деле EER равнялся, соответственно, 6,6 и 7,12, а испытание двух агрегатов 35 кВт с номинальным EER=8,7, проведенное в штате Коннектикут, выявило, что средние значения кпд, замеренные на протяжении трех недель, составили, соответственно, 6,6 и 8,63.

Рабочие характеристики крышных агрегатов можно улучшить, реализуя программу их регулярного технического обслуживания. Например, проект изучения способов повышения КПД 25 коммерческих крышных агрегатов в Новой Англии позволил добиться экономии энергии, в среднем, в размере 11% и снизить потребление энергии на 2% при окупаемости меньше чем за три года4, а аналогичный проект в штате Луизиана, где выполнили "полную профессиональную наладку" 23 кондиционеров в мотелях, ресторанах и продовольственных магазинах, привел к повышению кпд в диапазоне от 22 до 42%.5 Хотя эти примеры и представляют собой результат разовых усилий по повышению кпд и качества эксплуатации, техническое обслуживание крышных агрегатов - это постоянный процесс, и "наладку" необходимо производить ежегодно. Возможные направления эксплуатации и технического обслуживания крышных агрегатов можно классифицировать в зависимости от двух их внутренних контуров, а именно: воздушного контура и контура хладагента. Техническое обслуживание и ремонт на воздушной стороне следует проводить перед тем, как заниматься системой охлаждения, так как большую часть проблем, связанных с охлаждением, нельзя успешно решить до тех пор, пока не будет правильно налажен воздушный поток. Например, измерение объема хладагента даст неточные результаты, если воздушный поток ограничен из-за загрязнения фильтров.

Фильтры

Фильтры выполняют две важные функции: они помогают поддерживать нужное качество воздуха в помещении, а также защищают расположенные в "нижней" части технологической схемы элементы системы кондиционирования воздуха (испарительный змеевик и вентилятор) от отложения грязи.

Карманные фильтры, изготовленные из хлопка или синтетической ткани, стоят дороже, но их рабочие характеристики лучше, чем у плоских фильтров из стекловолокна или ковриков из крученого полиэфира (Рис. 2). Ткань способствует тому, что кпд фильтрации повышается с уровня ниже 20% примерно до 30%, а складки увеличивают эффективную площадь фильтров, уменьшают падение давления и продлевают срок полезной службы. Например, использование 2-дюймовых волоконных или полиэфирных фильтров в 35 кВт крышном агрегате обойдется примерно в 100 долл. в год в виде затрат на материал и стоимость рабочей силы, в то время как при использовании 2-дюймовых фильтров из гофрированной ткани затраты составят около 60 долл. в год. Более длительный срок службы карманных фильтров (шесть месяцев против двух месяцев) перевешивает их более высокую продажную стоимость.

worker2

Рис. 2. Гофрированные фильтры обеспечивают более эффективную фильтрацию и снижение полных эксплуатационных затрат в сравнении с показанными здесь плоскими фильтрами

Фильтр-рамы крышных агрегатов имеют толщину 1 или 2 дюйма (25 или 50 мм). Двухдюймовые (50 мм) карманные фильтры лучше, так как большее количество материала увеличивает площадь поверхности, задерживающей загрязняющие вещества, а снижение их скорости в сечении уменьшает величину падения давления. Некоторые 1-дюймовые (25 мм) рамы можно переделать на 2 дюйма (50 мм) и тем самым легко усовершенствовать систему фильтрации агрегата, для чего нужно просто повернуть направляющую, которая удерживает фильтры в нужном положении.

Промежутки времени между заменой фильтров можно определять в зависимости от величины падения давления на фильтре, на основании календарного графика или результатов визуального осмотра. Хотя два последних способа в случае крышных агрегатов применяют чаще всего, самым надежным способом оценить, насколько засорен фильтр, является измерение падения давления на воздушной стороне. Техник может установить штуцер для отбора давления, а затем проверить состояние фильтра с помощью ручного манометра; когда падение давления превысит установленный уровень, который обычно составляет примерно от 0,5 до 0,75 дюймов водяного столба (от 125 до 188 Па) выше уровня падения давления, характерного для нового фильтра,- фильтры пора менять. На установках, где засорение фильтров происходит через регулярные промежутки времени, можно измерить давление, чтобы определить соответствующие временные интервалы между заменой фильтров, после чего их замену можно производить по календарному графику. Такие промежутки времени по графику должны составлять от одного до шести месяцев в зависимости от степени засорения фильтров загрязняющими веществами, которые содержит воздух внутри и вне помещения, а также от типа фильтра.

Житейская мудрость подсказывает, что грязные фильтры снижают КПД крышных агрегатов, однако на самом деле экономия энергии может оказаться очень незначительной в силу системных эффектов. Анализ 35 кВт агрегата показывает, что рост статического давления на 1 дюйм водяного столба (250 Па) вследствие загрязнения фильтров снижает кпд компрессора, но зато увеличивает кпд вентилятора, так что чистые потери составляют всего лишь около 21 долл. в год (1%) в виде энергетических затрат. Тем не менее, грязные фильтры, помимо прочего, снижают еще и общий расход воздуха на 23% и сокращают производительность по охлаждению на 7%. Регулярно менять фильтры действительно имеет смысл, но не ожидайте от этого большой экономии энергии.

Испарительный змеевик

Загрязнение испарительного змеевика порождает две проблемы: оно снижает расход воздуха в системе и напрямую снижает кпд теплопередачи змеевика, что приводит к существенному сокращению производительности по охлаждению. Как показали исследования в штате Луизиана, испарительные змеевики в 87% из числа 23 агрегатов, обследованных на предмет проведения наладки, нуждались в очистке.6

Имеет смысл проводить осмотр змеевика не реже одного раза в год, чтобы проверить, справляются ли фильтры с работой. Проверяйте чистоту змеевика, измеряя силу тока на подающем вентиляторе и величину падения давления на фильтре/змеевике (при новых фильтрах). Если сила тока меньше, а падение давления больше, чем это было год назад (также при использовании новых фильтров), то расход через змеевик стал меньше - значит, змеевик загрязнен и требует очистки. Чистить испарительный змеевик следует с помощью электрического промывного устройства.

Подающий вентилятор

Вентиляторы относительно старых крышных агрегатов имеют муфтовые подшипники, которые представляют собой смазываемые беговые поверхности контакта "металл-металл". Их следует легко смазывать два-три раза в год рекомендованным для этой цели смазочным материалом. Полезно поместить рядом с подшипниками табличку с указанием периодичности смазки и типа смазочного материала, а также журнал обслуживания.

Более новые вентиляторы оснащены самосмазывающимися подшипниками в виде герметичных кассет, предварительно заправленных густой смазкой. Сменить густую смазку в этих подшипниках невозможно, так что когда они, наконец, выходят из строя - обычно через несколько лет службы - кассету с подшипниками необходимо заменить. О скором выходе подшипников из строя предупреждает чрезмерный шум, вибрация или выделение подшипником тепла.

В крышных агрегатах время от времени можно встретить и обычные шарикоподшипники с густой смазкой. Самой распространенной проблемой, возникающей в связи с этими подшипниками, является избыток смазки, что может нанести такой же вред, как и ее недостаток.7 Правильный порядок действий здесь состоит в том, чтобы открыть сливную пробку и вводить густую смазку через наливной фитинг до тех пор, пока чистая смазка не начнет вытекать из сливного отверстия. Будьте внимательны, чтобы густая смазка или смазочное масло не попало на маховик или ремень шкива, так как это приводит к заеданию.

Большинство специалистов по ОВК могут рассказать, по крайней мере, одну историю о том, как они обнаружили, что электродвигатель вентилятора работает не в ту сторону. Центробежные вентиляторы будут все равно подавать какую-то долю обычного объема воздуха, даже работая в обратную сторону (примерно 50% расчетного расхода воздуха), так что подобная ситуация может не сразу стать очевидной. Наиболее распространенная причина работы вентилятора в обратную сторону - это переключение кабельных выводов на электродвигателе. Чтобы избежать этой проблемы, может оказаться полезным поместить таблички с четкими пояснениями на корпусе вентилятора, шкивах, электродвигателе и кабелях.

Вентиляторный ремень

Слабо натянутые ремни проскальзывают на маховиках шкива (Рис. 3), что приводит к потере крутящего момента и быстрому износу ремней, в то время как слишком туго натянутые ремни создают чрезмерную боковую нагрузку на электродвигатель, приводя к быстрому износу подшипников. Правильного натяжения ремня можно добиться с помощью тензодатчика деформации, однако большинство технических специалистов регулируют натяжение, просто нажимая на ремень пальцем. И тот, и другой способ хороши, если соблюдать последовательность в их применении. Ремни также следует выравнивать с помощью поверочной линейки.

wheel

Рис. 3. Слишком слабо натянутые ремни вентилятора приводят к быстрому износу ремня и потере крутящего момента, а слишком тугое натяжение вызывает быстрый износ подшипников

Некоторые специалисты отстаивают идею замены ремней один или два раза в год, другие оставляют ремни в работе до тех пор, пока они не порвутся. Обычный комплект ремней для подающего вентилятора 10-тонного (35 кВт) агрегата стоит от 5 до 10 долл., а вызов специалиста по техническому обслуживанию для замены порванного ремня стоит не меньше 65 долл., поэтому представляется целесообразным заменять ремни по графику, не дожидаясь, пока они порвутся. Хорошим способом повысить кпд приводного агрегата на 2-10% является замена стандартных ремней на зубчатые клиновые ремни.8 Дополнительные затраты на зубчатые клиновые ремни составляют около 20%.

Электродвигатель вентилятора

Электродвигатели подающих вентиляторов, которые монтируют сами изготовители оборудования, - это обычно асинхронные двигатели со стандартным кпд. Для новых крышных агрегатов или для замены вышедших из строя устройств в существующем оборудовании стоит заказывать двигатели с повышенным кпд. Например, применив лучший из доступных асинхронный двигатель мощностью 2 л.с. (1,5 кВт) (с кпд 89,5% вместо 81,5%) в 10-тонном (35 кВт) крышном агрегате, можно сэкономить на эксплуатационных затратах около 60 долл. в год при дополнительных вложениях в размере примерно 85 долл., то есть эти вложения окупятся за 17 месяцев.

Заслонка для наружного воздуха

Неправильное функционирование заслонки крышных агрегатов - весьма распространенная проблема. Исследование 13 крышных агрегатов на малых нежилых зданиях показало, что ни у одного из них заслонки наружного воздуха нормально не работали.9 Эта проблема может иметь серьезные энергетические последствия в регионах, где можно извлечь преимущества из использования экономайзера, а также, независимо от климата, оказать потенциально серьезное влияние на качество воздуха в помещении. Обслуживание заслонок состоит в очистке, смазке и проверке перемещения заслонки и обходится, в смысле затрат времени техника, в сумму примерно от 10 до 20 долл. Если речь идет о сокращении времени работы одного из 5-тонных (17 кВт) компрессоров 10-тонного (35 кВт) агрегата на 500 часов в год, то это сэкономит примерно 185 долл. в год.

После очистки и смазки заслонку следует проверить на возможность перемещения по всей ее траектории. После этого следует проверить уставку экономайзера. Несмотря на то, что многие экономайзеры настраивают примерно на 60 oF (16 0C), уставка может быть выше, достигая уровня температуры обратного воздуха (около 74 oF [23 oC]), чтобы обеспечить особо хорошую вентиляцию. Однако в высоковлажном климате или там, где наружный воздух сильно загрязнен, максимизировать приток наружного воздуха при низких температурах по сухому термометру может быть неоправданно.

Целоcтность корпуса

Из многих крышных агрегатов дорогостоящий охлажденный воздух утекает на крышу через корпус. Многие крышные агрегаты покрыты панелями, которые крепятся винтами из тонколистового металла, однако часто, после нескольких легкомысленных вызовов специалистов по обслуживанию, на этих панелях остаются всего один или два винта. Беспроводная дрель и гайковерт с правой резьбой делает доступ к панели быстрым и легким и создает хорошие условия для замены винтов. Техникам, кроме того, следует иметь под рукой мешочек с винтами для замены отсутствующих винтов. Потеря 200 фут3/мин. (94 л/с) в случае 10-тонного (35 кВт) крышного агрегата снижает производительность по охлаждению и расход воздуха примерно на 5% и означает лишние энергетические затраты в размере свыше 100 долл. в год.

Зарядка хладагентом

Существует целый ряд методов для проверки и корректировки заряда хладагента в системах охлаждения непосредственного расширения, начиная от измерения протяженности той части трубопроводов, где выступил конденсат, и кончая наблюдением через смотровое стекло. При осмотре 25 контуров хладагента на 18 крышных агрегатах выяснилось, что в 10 (40%) имел место избыточный, а в 8 (32%) - недостаточный заряд.11 Недостаточный заряд системы - это чаще всего результат утечек, в то время как причиной избытка заряда может быть то, что техник заправил агрегат в холодный день или ввел дополнительное количество хладагента, желая "исправить" ситуацию, если произошло обледенение испарительного змеевика, что, вероятнее всего, явилось следствием низкого расхода воздуха. На Рис. 4 показано, как отклонение от правильного объема зарядки хладагентом влияет на производительность агрегата.

Самый точный способ проверить и исправить зарядку хладагентом состоит в измерении перегрева и (или) недоохлаждения (либо, если агрегат снят с крыши, в том, чтобы точно отвесить нужное количество хладагента). Однако измерять перегрев и недоохлаждение имеет смысл только тогда, когда они коррелируют с нагрузками на конденсатор и испаритель. Техникам следует иметь толстую ткань или иное средство для блокирования воздушного потока через конденсатор в целях моделирования расчетных условий окружающей среды, либо справочную таблицу от изготовителя, содержащую данные о допустимом перегреве для различных температур окружающего воздуха. Величина перегрева для большинства систем непосредственного расширения должна находиться в диапазоне от 10 до 20 oF (от 6 до 11 oC).

Идея перегрева состоит в том, чтобы защитить компрессор, и поэтому теперь некоторые изготовители указывают в спецификации значения перегрева, замеренные на входе во всасывающую линию компрессора, а не там, где это традиционно делалось, т.е. у шарика термометра терморегулирующего вентиля. Разница в величине перегрева между двумя этими точками может достигать нескольких градусов-этого достаточно для серьезной ошибки при зарядке агрегата хладагентом.

Терморегулирующий расширительный вентиль

Некоторые специалисты по техническому обслуживанию возлагают вину за неисправности системы на терморегулирующий расширительный вентиль (ТРВ), однако пытаться отрегулировать винты внутренней пружины следует только после того, как исключено возможное влияние прочих факторов. Для крепления температурного датчика вентиля к всасывающей линии всегда должны применяться медные скобы (а не стальные хомуты или пластиковые застежки типа "молния"), чтобы обеспечить полную теплопередачу между шариком термометра и трубой.

Компрессор

В девяноста процентах случаев замену крышных агрегатов производят из-за отказа герметичного электродвигателя-компрессора.13 Замена компрессора - это очень серьезная операция, которая стоит от 1500 до 5000 долл. или даже больше в зависимости от его производительности по охлаждению. В ходе ежегодных проверок крышных агрегатов следует проводить электрические испытания и проверку масла.

Электрические испытания предназначены для проверки работоспособности двигателя компрессора путем измерения сопротивления заземления обмоток двигателя с помощью мегомметра, для чего требуется прибор стоимостью в 300 долл. и примерно 10 минут времени. Низкие показания мегомметра (обычно менее 100 Мегом) означают необходимость "осушения" системы путем монтажа фильтра-влагоотделителя и (или) обезвоживания системы с помощью глубокой откачки.

Советы по техническому обслуживанию

Чтобы обеспечить высокое качество технического обслуживания, необходимо найти такого подрядчика, который отличается хорошим качеством и добросовестностью. Непременно проверяйте рекомендации, попросите показать образцы отчетов и выясните, насколько серьезно подрядчик относится к обучению и подготовке своих технических специалистов и оснащению их нужными инструментами. Подробная программа технического обслуживания предусматривает проведение проверок перед началом каждого отопительного сезона и сезона охлаждения и составление полной отчетности, которая отражает выводы, сделанные специалистами по техническому обслуживанию.

  • Не позволяйте подрядчикам по техническому обслуживанию держать у себя единственные экземпляры документации со сведениями о рабочих характеристиках. o Храните информацию о рабочих характеристиках (монтажные схемы, графические характеристики вентиляторов и т.д.) вблизи агрегата.
  • У каждого агрегата должны быть журнал технического обслуживания и ведомость "аварийных" событий.
  • Записи и контейнеры для их хранения должны быть достаточно прочными, чтобы выдерживать неправильное обращение с ними. Подумайте, не стоит ли вам использовать для этой цели армированную листовую бумагу для тяжелых условий эксплуатации и обложки для бумаг, а также водонепроницаемые металлические ящики.
  • Ясно видимые и четкие надписи способствуют использованию по назначению журналов технического обслуживания и прочих контрольных документов. Использование журналов технического обслуживания и прочих контрольных документов может быть оговорено в контрактах с поставщиками услуг.

Проверку масла выполняют на площадке, вставляя небольшую ампулу-индикатор в служебный порт вентиля Шредера. Если в масле содержится кислота, то ампула-индикатор меняет цвет. Проверочные ампулы стоят около 10 долл. каждая, причем их можно использовать повторно до тех пор, пока проверка компрессора не даст отрицательный результат. Самое важное- проверить масло на наличие кислоты после отказа компрессора, однако это можно делать и в рамках ежегодного испытания. Системы, которые не пройдут такую проверку, следует оснастить одним или несколькими фильтрами-влагоотделителями, предназначенными для очистки системы от кислоты и влаги.

Если электропроводка агрегата выбрана неверно (например, с заниженными параметрами или в ином смысле), то слишком низкое напряжение может привести к повреждению двигателя компрессора (двигатель реагирует на низкое напряжение, потребляя больше тока, что резко увеличивает электрический нагрев в обмотках двигателя). Если есть основания подозревать наличие этой проблемы, а причину проблем, связанных с напряжением, устранить слишком трудно или это требует чрезмерных затрат, то на крышном агрегате прямо перед его главным рубильником можно установить защитный фазоиндикатор, что потребует затрат от 200 до 300 долл.15 Эти устройства отсекают питание от агрегата, когда напряжение выходит за допустимый диапазон (обычно составляющий плюс-минус 10%), и вновь запускают агрегат, когда условия становятся безопасными.

Змеевик конденсатора

Грязный змеевик конденсатора, повышающий температуру конденсации с 95 oF (35 oC) до 105 oF (41 oC), сокращает производительность по охлаждению на 7% и увеличивает потребление энергии на 10%, приводя к чистому падению кпд (компрессора) на 16%.16 Такое ухудшение рабочих характеристик на 10-тонном (35 кВт) агрегате, функционирующем при EER=9,0 в течение 2000 часов в год, приводит к потерям в виде лишних эксплуатационных затрат в размере около 250 долл. в год.17

Очистка конденсатора с помощью электрического промывного устройства, подающего чистящий раствор в поток воды высокого давления, обходится примерно в 50 долл. в виде затрат на рабочую силу и материалы. (Наносимые распылением чистящие растворы не дадут достаточного качества при очистке змеевиков с помощью щеток и шланга даже несмотря на то, что они способны высветлить наружную поверхность).18 Эти деньги будут потрачены разумно - очистка агрегата в данном примере окупается всего лишь за два месяца с небольшим, давая чистую годовую экономию в размере 200 долл. Серьезная процедура очистки конденсатора включает измерения - до и после очистки-перепада температур на змеевике для проверки результатов работы.

Вентилятор и электродвигатель конденсатора

Большинство двигателей вентиляторов конденсаторов оснащены шарикоподшипниками в виде герметичных кассет, не требующих смазки. Избыточный шум, вибрация или нагрев на подшипнике указывают на необходимость замены кассеты.

Короткий цикл включения-выключения вентилятора конденсатора (три минуты или меньше) ведет к плохому управлению системой охлаждения и, возможно, преждевременному износу двигателя вентилятора. Эта проблема часто является следствием узости "мертвой зоны" регулятора давления на выходе для вентилятора конденсатора. Разумная величина "мертвой зоны" (от 20 до 50 фунтов на дюйм2 [от 138 до 345 кПа] между уставками начала и окончания срабатывания по давлению предотвращает краткость рабочих циклов вентилятора конденсатора


Как и все кондиционеры, крышные агрегаты - это сложные машины, которые быстро поглощают свою продажную цену за счет эксплуатационных затрат. Обеспечить техническое обслуживание и эксплуатацию этих агрегатов таким образом, чтобы снизить энергетические затраты и избежать дорогостоящих ремонтов, - это важная техническая и организационная задача, которая заслуживает пристального внимания со стороны управляющих зданиями и сооружениями и поставщиков услуг.

Ссылки
  1. U.S. Department of Energy, Energy Information Administration, "Commercial Buildings Characteristics 1992," DOE/EIA-0246 (92), page 201 (April 1994). /Министерство энергетики США, Управление энергетической информации, "Характеристики нежилых зданий 1992", стр. 201 (апрель 1994 г.).
  2. Mukesh Khattar and Michael Brandemuehl, "Dehumidification Performance of Unitary Rooftop Air Conditioning Systems: Kmart Demonstration," EPRI TR-106066, 3565-06, Final Report (May 1996), Electric Power Research Institute, Palo Alto CA, 415-855-2514, p. 4-7. /Рабочие характеристики по осушению воздуха агрегатированных крышных систем кондиционирования: Демонстрационный проект", Окончательный отчет, Институт электроэнергетических исследований, Пало-Альто, Калифорния, стр. 4-7/.
  3. Scott Silver, Philip Fine, and Fred Rose, "Performance Monitoring of DX Rooftop Cooling Equipment", Energy Engineering, vol. 87, no. 5 (1990), pp. 32-41. /"Мониторинг рабочих характеристик крышного охлаждающего оборудования непосредственного расширения"/.
  4. Martha Hewett, David Bohac, Russell Landry, Timothy Dunsworth, Scott Englander, and George Peterson, "Measured Energy and Demand Impacts of Efficiency Tune-Ups for Small Commercial Cooling Systems," Proceedings, ACEEE 1992 Summer Study on Energy Efficiency in Buildings (1992), p. 3.139Ч3.140. /"Измерение воздействия наладки кпд на расход энергии и нагрузку в малых коммерческих системах охлаждения", Труды Летнего 1992 г. симпозиума ACEEE по энергетической эффективности зданий (1992), стр. 3.139Ч3.140./
  5. Michael Carl and Joseph Smilie, "How Maintenance Impacts Air Conditioning Performance and Demand," Proceedings of the 1992 International Winter Meeting of the American Society of Agricultural Engineers, Nashville, TN, (December 1992), p. 7. /"Как техническое обслуживание влияет на рабочие характеристики и нагрузку по кондиционированию воздуха", Труды Международной Зимней 1992 г. конференции Американского общества сельскохозяйственных инженеров, Нэшвилл, Теннесси (декабрь 1992), стр. 7/.
  6. Carl and Smilie [5].
  7. Bill Howe et al., E Source Drivepower Technology Atlas, (1996), p. 92. /"Приводы: Технологический атлас", стр. 92/.
  8. Howe [7].
  9. Alan Vick, John Proctor, and Frank Jablonski, "Evaluation of a 'Super Tune-Up' Pilot Program for Forced-Air Furnaces in Small Commercial Buildings," Proceedings, International Energy Program Evaluation Conference, Chicago, Illinois, p. 503 (1991). /"Оценка пилотной программы 'суперналадки' для печей с принудительным нагнетанием воздуха в малых нежилых зданиях", Труды "Конференции по оценке Международной энергетической программы", Чикаго, Иллинойс, стр. 503 (1991)/.
  10. Эта величина расхода могла бы иметь место при общей площади утечек 10 кв. дюймов (6450 мм2) и скорости на выходе 33 мили в час (15 м/с). Принимая, что производительность агрегата равна 4000 фут3/мин. (1888 л/c); утечки через корпус 5%; EER=9,0; продолжительность работы 2000 часов в год, а стоимость электроэнергии 8 центов за 1 кВтoч, получим, что издержки вследствие утечек воздуха составляют 106,40 долл. в год.
  11. Hewett et al. [4], p. 3.131.
  12. Dale Rossi, частное письмо (20 сентября 1996 г.), Chief Technical Officer (главный технический специалист), "Four Seasons Mechanical Inc.," 1979 Stout Drive, Ivyland PA 18974, тел. 215-672-9600, факс 215-671-9658, эл. почта dtrossi@acrx.com, web www.acrx.com.
  13. David E. Stouppe and Tom Y.S. Lau, "Refrigeration and Air Conditioning Equipment Failures," The Locomotive (ежеквартальный журнал компании Hartford Steam Boiler Inspection and Insurance Co., г. Хартфорд, штат Коннектикут), Spring (весна) 1988, vol. 6, no. 1, pp. 3-9.
  14. Leon Neal, частное письмо (17 сентября 1996 г.), Senior Product Engineer (старший инженер-технолог), North Carolina Alternative Energy Corporation, 909 Capability Drive, Suite 2100, Raleigh NC 27606-3870, тел. 919-857-9018, факс 919-832-2696.
  15. Keith Clark, частное письмо (28 августа 1996 г.), Service Manager (менеджер по эксплуатации), Design Mechanical, 5637 Arapahoe Road, Boulder CO 80303, тел. 303-449-2092, факс 303-449-8739.
  16. Robert W. Roose, Handbook of Energy Conservation for Mechanical Systems in Buildings (New York: Van Nostrand Reinhold Company, 1978), p. 281. /"Справочник по энергосбережению для механических систем зданий"/ Данные относятся к 15-тонному (53 кВт) поршневому компрессору R-22. При температуре конденсации 95 0F (35 0C), избыточное давление на выходе составляет 181,8 фунтов на /кв. дюйм (1253 кПа), производительность 18,3 тонны (64 кВт), а потребляемая мощность компрессора - 14,3 котельных л.с. (140 кВт). При температуре конденсации 105 0F (40 0C), избыточное давление на выходе составляет 210 фунтов на кв. дюйм (1448 кПа), производительность 17,0 тонны (60 кВт), а потребляемая мощность компрессора-15,9 котельных л.с. (156 кВт). [Все значения даны для температуры всасывания 45 0F (7 0C) и избыточного давления всасывания 76,6 фунтов на кв. дюйм (528 кПа.).
  17. В предположении, что 75% энергии идет на компрессор, а общие затраты на электроэнергию составляют 8 центов за 1 кВтч.
  18. Keith Clark [15].
  19. Ira Richter, "Condenser Short Cycling", Refrigeration Service & Contracting, vol. 64, no. 8, p. 34 (August 1996). /"Краткий рабочий цикл конденсатора"/.

Благодарность

В данной статье использованы результаты исследования, проведенного для E Source, независимого источника информации по энергетическим технологиям, который издается в г. Боулдер, штат Колорадо.

Перепечатано из ASHRAE Journal, декабрь 1997 г.
Перевод с английского Б. Рубинштейна


Отопительно-вентиляционные системы зданий гостиничного типа

Отопительно-вентиляционные системы зданий гостиничного типа

При выборе отопительно-вентиляционных систем и оборудования для зданий гостиничного типа необходимо учитывать их специфику и особенности применения.

Предварительный расчет отопительно-вентиляционных систем

Отопительно-вентиляционные системы гостиничных номеров вполне сравнимы с аналогичными системами жилых зданий. Отличия состоят в более жестких требованиях к:

  • бесшумности работы. В большинстве случаев все гостиничные номера являются спальными комнатами;
  • качеству воздуха. В гостиничных номерах целесообразно обеспечивать более интенсивную вентиляцию по сравнению со зданиями гражданского назначения с целью предотвращения “накопления запахов” ковровыми покрытиями, гардинами, мебелью и т.п.;
  • гибкости работы. Не всегда номера в гостинице полностью заселены. В целях экономии электроэнергии установленные системы должны обеспечивать возможность дистанционного выключения (например, с поста службы размещения) систем отопления и вентиляции в свободных номерах, либо в тех номерах, где гости временно отсутствуют. Для того, чтобы гость не испытывал дискомфорта в момент, когда он входит в номер, где до этого в течение некоторого времени никто не проживал, отопительно-вентиляционная система гостиницы должна быть готова привести заселяемый номер в комфортный режим в самые короткие сроки;
  • легкости в обслуживании. В гостинице время, затраченное на обслуживание установленной в комнате отопительно-вентиляционной системы, есть время чистого простоя номера и, следовательно, влечет за собой прямые финансовые потери.

Таким образом, рекомендуется, чтобы все элементы отопительно-вентиляционных систем гостиничных номеров и, особенно тех, которые обслуживают все или группу номеров, были максимально надежными и требовали минимальных работ по обслуживанию, даже если стоимость таких систем будет более высокой.

Как правило, в номерах необходимо поддерживать температуру воздуха 26С при относительной влажности 50% в летний период и 20С при относительной влажности 50% зимой.

Однако, если планируются заезды иностранных гостей, целесообразно снизить на пару градусов летнюю температуру и настолько же повысить зимнюю.

Иностранные гости, особенно из стран Азии, Ближнего Востока и Северной Америки, считают для себя более привычным в доме совершенно иной температурный режим, нежели итальянцы. В Соединенных Штатах в жилых помещениях, поддерживается постоянная температура 24С и летом, и зимой.

При устройстве отопительно-вентиляционных систем могут применяться различные технические решения.

Системы “SPLIT” и “MULTISPLIT”

Для реконструкции старого гостиничного фонда рекомендуются отопительно-вентиляционные установки “Split” настенного типа или установленные в подвесном потолке за входной дверью. 
Такие системы позволяют обеспечить:

  • возможность оперативного ремонта и обслуживанияоборудования в одной или нескольких комнатах, не затрагивая остальные гостиничные номера;
  • кратчайшие сроки установки систем;
  • возможность использования аппаратов типа тепловой насос (с сохранением уровня затрат на установку). В этом случае в регионах с более теплым климатом, например на морском побережье, комнаты, первоначально предназначавшиеся только для проживания летом, могут использоваться и в зимний период;
  • низкую стоимость отопительно-вентиляционной системы; для одного гостиничного номера среднего уровня - около 3 000 000 ит. лир, если это системы охлаждения, и 3 500 000 – для тепловых насосов.
  • централизованное управление отопительно-вентиляционной системой, при котором портье имеет возможность отключать оборудование в незанятых гостиничных номерах;
  • практическую бесшумность работы внутренних и внешних блоков.

Современные “Split” системы, например, с изменяемым объемным расходом холодильного агента (VRV) отличаются большой экономичностью и могут иметь до шестнадцати внутренних блоков при одном внешнем.

Большим недостатком “Split” и “Multisplit” систем, если не применять напольные внутренние блоки с внешним воздухозабором (а таковые не всегда можно найти), является практическое отсутствие необходимой вентиляции комнат. Для вентиляции при использовании “Split” систем обычно применяется центральная система с подачей воздуха в каждое жилое помещение.


Системы с вентиляторными конвекторами (fancoil)

Такие системы применяются главным образом во вновь строящихся гостиницах. Как правило, при строительстве предусматривается установка аппарата за подвесным потолком у входа в номер, забор рециркуляционного воздуха производится снизу, а приток – в горизонтальном направлении (см. рис. 1).

Рис. 1. Схема типовой установки вентиляторного конвектора (fancoil) в гостиничном номере.

Аппарат встраивается, как правило, в подшивном потолке у входной двери. Воздухозабор рециркуляционного воздуха - снизу. Подача наружного воздуха – через оборудованное регулируемой заслонкой отверстие в задней стенке. Приток воздуха в номер - через регулируемый воздухораспределитель. Во избежание вибрации во всех соединениях аппарата с элементами конструкции здания применяются виброизолирующие элементы

Среди аппаратов данного типа для использования в гостиничном хозяйстве пригодными в наибольшей степени считаются:

  • аппараты с двухтрубной обвязкой. Подача вентиляционного наружного воздуха от центральной установки осуществляется по воздуховодам, проложенным в коридоре и выведенным в корпус аппарата. Таким образом обеспечивается необходимый приток воздуха для вентиляции помещения (от 10 до 25 л/с на каждого постояльца). Кроме того, в случаях, когда в переходный период часть комнат должна отапливаться, а другая - быть умеренно прохладной, охлаждение может обеспечиваться посредством подачи в номер наружного воздуха, имеющего температуру 14-150С, тогда как в трубопроводе теплообменников будет продолжать циркулировать горячая вода. Чтобы гарантировать оптимальное управление температурой воздуха в помещениях, регулирование необходимо осуществлять посредством клапана, управляемого соответствующим термостатом контроля температуры воздуха в помещении, который регулирует подачу воды в теплообменник.
  • аппараты с четырехтрубной обвязкой. Распределение воздуха осуществляется аналогично схеме, описанной выше (аппараты с двухтрубной обвязкой).

В этих случаях температура первичного воздуха значения не имеет, поскольку охлаждение и отопление номеров в межсезонный период обеспечивается одновременной циркуляцией горячей и холодной воды в двух распределительных контурах. Регулирование работы аппарата производится посредством имеющихся в каждом контуре клапанов (двухходового либо трехходового), действующих поочередно, в зависимости от сигнала, поступающего от термостата регулирования температуры воздуха в помещении.

В силу высокой стоимости аппараты такого типа применяются в случаях, когда использование других систем представляется невозможным. Типичный случай – гостиничные номера с большой площадью остекления, некоторые из которых в определенное время в зимний период требуется иногда охлаждать (и довольно значительно).

Системы с регулируемым расходом воздуха

Такие системы в настоящее время быстро распространяются в Соединенных Штатах. Они целиком воздушные и обеспечивают регулируемое смешение первичного и рециркуляционного воздуха на входе в помещение. При этом объем приточного воздуха остается постоянным. В конструкции используется смесительная коробка (рис. 2), оборудованная регулятором расхода первичного воздуха, поступающего по воздуховодам (регулятор управляется термостатом контроля температуры воздуха в помещении), и вентилятором, который забирает воздух из помещения, подмешивает к нему первичный воздух и поддерживает на постоянном уровне воздушный поток поступающий в помещение.

Рис. 2. Схема аппарата со смесительной коробкой. Аппараты данного типа широко применяются в Соединенных Штатах в отопительно-вентиляционных системах гостиничного хозяйства. Их преимущество – регулируемый расход первичного воздуха и поддержание на практически неизменном уровне расхода приточного воздуха. В силу особенностей конструкции, аппараты позволяют использовать первичный воздух с низкой температурой (до 7 0С); при этом применяются стандартные воздухораспределители и обеспечивается значительная экономия средств на оборудовании воздуховодов.

Таким образом, становится возможным избежать уменьшения объема приточного воздуха (“воздушный провал”), когда нагрузка охлаждения помещения (и, следовательно, расход первичного воздуха) падает слишком низко. Теплообменник обеспечивает подачу тепла, необходимого в зимний период. Теплообменник работает вместе с регулятором расхода первичного воздуха, который полностью никогда не отключается и обеспечивает необходимую вентиляцию помещений.

В результате для всех постояльцев гостиницы гарантируется возможность одновременного обеспечения отопления и охлаждения. Аппараты данного типа вобрали в себя преимущества воздушных отопительно-вентиляционных систем с регулируемым расходом воздуха (снижение затрат по эксплуатации вентилятора, возможность использования высокоскоростных воздуховодов и проч.) и преимущества установок с постоянным расходом воздуха (отсутствие “воздушных провалов”, использования стандартных воздухораспределителей).

Возможность смешивания воздуха из помещения с первичным воздухом позволяет использовать первичный воздух, имеющий очень низкую температуру (1-7С), избегая при этом проблем с воздухораспределением. В силу данной особенности уменьшаются размеры воздуховодов, снижаются эксплуатационные расходы вентилятора: в самом деле, при температуре воздуха в помещении 26С объем воздуха, необходимого, к примеру, с температурой 9С для ассимиляции теплоизбытков составляет 64% от объема требуемого воздуха с температурой 15С.

Насколько нам известно, в настоящее время в Италии аппараты со смесительными коробками пока не эксплуатируются. Однако они есть на рынке и заслуживают того, чтобы о них знали.

Тепловая нагрузкаЛетний период

Основную нагрузку гостиничных номеров составляют теплопоступления через ограждающие конструкции, ее расчет особой сложности не представляет. В качестве дополнительных могут рассматриваться следующие нагрузки:

  1. от людей, 65 Вт/чел явного тепла и 65 Вт/чел скрытого;
  2. от освещения, для которого, в среднем, можно установить нагрузку от 5 до 10 Вт/м2, если иное не предусмотрено требованиями архитектора проекта. ( Теоретически в период пиковой нагрузки (то есть днем) свет должен быть выключен. Однако данные значения будет все-таки лучше принять во внимание, поскольку чаще всего свет в помещениях жильцы не выключают);
  3. от бытовых электрических приборов. В гостиничных номерах к данной категории можно отнести лишь холодильник, который, как правило, выделяет не более нескольких десятков Вт. Другие источники, например, фен, можно смело исключить, поскольку его применение крайне ограничено по времени;
  4. от наружного воздуха. Его тепло следует рассматривать с учетом внешних климатических условий. Что касается объемного расхода, его значение рассматривается на основе показателя 15 л/с на каждый гостиничный номер в соответствии с требованиями норм ASHRAE-1989.
Зимний период

О зимней нагрузке можно сказать немного. Это всего лишь:

  1. теплопотери самого гостиничного здания, рассчитываемые по проектным данным в зависимости от теплоизоляции сооружения и в соответствии с требованиями Закона 10/91;
  2. наружный воздух, составляющая которого в нагрузке рассчитывается по проектным условиям для тех же значений объемного расхода, что в летний период.

В случае отопления следует учесть явное тепло от людей и от освещения. По нашему мнению, однако, его не следует принимать в расчет при оценке теплопотерь, поскольку таким образом обеспечивается более быстрый запуск (и отключение) отопительно-вентиляционной системы в рабочий режим. С этой целью было бы неплохо предусмотреть превышение мощности установленных комнатных аппаратов примерно на 20%, но не учитывать его при определении мощности источника тепла, потому что вряд ли когда-либо потребуется запустить и вывести в рабочий режим все гостиничные номера одновременно.

Другие соображения

Оборудование для производства холода (холодильная установка либо конденсаторно-компрессорный блок “Split” систем) должны размещаться так, чтобы шум их работы не доставлял неудобств постояльцам гостиницы. Необходимо удостовериться в том, что, по крайней мере, ночью (то есть, когда отопительно-вентиляционная установка работает на низких оборотах) шум от работы механизмов целиком покрывается шумовым фоном внешней среды. В противном случае следует отрегулировать систему таким образом, чтобы уровень шума не выходил за допустимые пределы.

С особой тщательностью следует выбирать по параметрам шумности аппараты, которые планируется установить в помещениях. При их выборе необходимо учитывать, что максимальный слышимый уровень шума должен составлять 30 NC (35 dBA) на минимальной скорости (при работе в ночной период).

Обычно соблюдение данных требований не составляет особой проблемы, если применяется “Split” система, поскольку внутренние блоки, как правило, имеют достаточно низкий уровень шума. В случае использования систем с вентиляторными конвекторами (fancoil) необходимо производить их выбор по средней скорости вентилятора, потому что на максимальной скорости шум этих аппаратов превышает уровень, допустимый для ночного периода.

Пример расчета стоимости отопительно-вентиляционной системы

Рис. 3. План мотеля, рассматриваемого в качестве примера расчета вентиляционно-отопительной системы. Здание спроектировано для строительства в дальнем пригороде Милана. Общая площадь двадцати гостиничных номеров, для которых необходимо организовать вентиляцию и отопление (включая санузлы), составляет 370 м2 кубатурой примерно 1040 м3.

Пример расчета, который мы здесь рассмотрим, относится к мотелю в дальнем пригороде Милана. Здание мотеля одноэтажное, номера расположены по обеим сторонам центрального коридора (см. рис. 3). Потолочное перекрытие коридора допускает установку подвесного потолка. В западной части здания есть помещение, где на нулевом уровне можно оборудовать небольшой тепловой пункт, а на крыше установить холодильную установку и оборудование для обработки первичного воздуха.

В гостинице предусмотрены 20 двойных номеров общей площадью около 370 м2 (включая санузлы) при высоте потолков 2,8 м.

Общий объем, подлежащий вентиляции и отоплению, составляет примерно 1040 м3. Служба размещения, ресторан, кухня и административно-хозяйственные службы расположены в другом здании, обслуживаемом отдельной вентиляционно-отопительной системой, которая в данной статье не рассматривается.

С учетом места расположения мотеля и типа постояльцев (жители Италии, следующие проездом) следует ориентироваться на такие показатели:

Летний период

  • Температура воздуха в помещении 26С, относительная влажность – 50 + 10%;
  • Температура наружного воздуха 32С, относительная влажность – 50 + 10%.

Зимний период

  • Температура воздуха в помещении 20С, относительная влажность – 45 + 15%;
  • Температура наружного воздуха - 50С, относительная влажность – 100%.
Состав отопительно-вентиляционной системы

В силу конструктивных особенностей по действующим строительным нормам и правилам такому зданию при больших площадях остекления (данное обстоятельство на рисунке не отражено) требуется минимальное аэроосвещение, что в свою очередь обусловило выборсистемы с вентиляторными конвекторами (fancoil).
Как было уже отмечено, для установок этого типа минимальный воздухообмен составляет 15 л/с на один гостиничный номер. Однако, в нашем конкретном случае был предусмотрен значительно больший объем наружного воздуха (25 л/с на человека), поскольку из-за непрерывной смены постояльцев (turn over) необходимо в кратчайшие сроки обеспечить устранение остаточных запахов (сигаретный дым и проч.).

Кроме того, для гостиничных структур такого типа не является исключением заселение одного и того же номера несколько раз в день.

В рассматриваемом случае вентиляция помещений обеспечивается подачей обработанного наружного воздуха в центральном кондиционере и распределением его в номера по сети воздуховодов к fancoil, установленным в подвесном потолке прихожей с понижением на 40 см от уровня потолочного перекрытия.

Удаление воздуха - вытяжной системой из санузлов, имеющих объем около 9 м3.

Количество первичного воздуха достаточно для вентиляции санузлов, поскольку 20-и объемов в час с запасом хватает, чтобы обеспечивать в них смену воздуха каждые три минуты

Управление работой fancoil осуществляется посредством электронного трехходового клапана, установленного на теплообменнике, регулируемом термостатом контроля температуры воздуха в помещении.

Таким образом, устраняются циклические включения и выключения вентилятора, которые будут действовать на нервы во время сна, если вывести термостат непосредственно на вентилятор.

Термостаты в обязательном порядке оснащаются переключателем “лето/зима”, который во избежание всякого рода недоразумений управляется с центрального пульта технической службы.

Охлажденная вода производится холодильным агрегатом с воздушным конденсатором, установленным на крыше технической комнаты. В самой комнате, расположенной в западной части здания, оборудован тепловой пункт. Кроме того, там размещены насосные агрегаты, расширительный бак, бак-аккумулятор и котел.

Горячая вода для системы горячего водоснабжения производится отдельным тепловым генератором, который в нашем примере не рассматривается.

Агрегат обработки воздуха установлен снаружи вблизи холодильного агрегата.

С учетом расположения насосов, распределительная сеть, в целях обеспечения ее сбалансированности, построена в виде контура Тикельмана (Tickelmann) с инверсионным возвратом. Для обеспечения необходимого поглощения влаги и поддержания холодного резерва летом и в межсезонье первичный воздух должен подаваться при температуре 140С с фиксированным контролем.

В зимний период первичный воздух должен иметь ту же температуру, поскольку управление fancoil посредством трехходового клапана позволяет осуществлять последующий подогрев воздуха, избегая холодных воздушных течений. Кроме того, даже при отсутствии подачи тепла, то есть когда регулирующий клапан полностью закрыт, температура подаваемого воздуха никогда не будет слишком холодной, потому что точка смешивания первичного воздуха и воздуха из помещения не должна опускаться ниже 18С.

Как уже подчеркивалось, кондиционер первичного воздуха (см. рис. 4) размещается в помещении, прилегающем к тепловому пункту, и имеет клапан наружного воздуха с электроприводом. Клапан закрывается при выключении двигателя вентилятора и включении термостата для предотвращения замерзания воды в теплообменнике. В состав кондиционера входят также фильтры предварительной очистки, карманные фильтры, степень очистки - 85%, калорифер, увлажняющий блок, воздухоохладитель и вентилятор.

Фиксированное переключение “лето/зима” предусматривает наличие подающего модулирующего термостата, отрегулированного на 14С, и контролирует последовательно положение трехходового клапана теплообменников.

Рис. 4. Схема узла обработки воздуха и гидравлической установки в качестве примера регулирования работы системы в рассматриваемом проекте

Нагрузка в летний период

Общая нагрузка на fancoil соответствует разнице между максимальной одновременной нагрузкой по явному теплу (26830 Вт). Тепло наружного воздуха не учитывается на этом этапе, а также при определении типоразмеров fancoil, поскольку нужно принять в расчет неизбежные потери тепла трубопроводов, обеспечить наличие некоторого резерва мощности и ускорение запуска вентиляционно-отопительных систем гостиничных номеров.

А вот нагрузка на воздухоохладитель узла обработки первичного воздуха, составляет при этом 24200 Вт. Данное значение является суммой:

  • скрытого тепла помещения - 2200 Вт;
  • скрытого тепла по наружному воздуху - 14800 Вт;
  • явного тепла по наружному воздуху - 7200 Вт.

Значение нагрузки на холодильную установку, в соответствии с которой она выбирается, рассчитывается как сумма: (26380 + 24200) = 51030 Вт

Нагрузка в зимний период

Тепловая мощность, которую должен будет производить тепловой генератор, является суммой:

  • теплопотерь - 26390 Вт;
  • явного тепла по наружному воздуху - 7200 Вт;
  • общей нагрузки, необходимой для обработки наружного воздуха (см. рис. 5), т. е. 45000 Вт.

Значение нагрузки на тепловой генератор, в соответствии с которым он подбирается, рассчитывается следующим образом: (26390 + 7200 + 45000) = 78590 Вт, из которых (26390 + 7200) = 33590 Вт нагрузка fancoil, а 45000 Вт – на калорифер узла обработки воздуха.

Рис. 5. Однорядная схема распределения воздуха и распределения воды по fancoil вентиляционно-отопительным терминалам в рассматриваемом нами примере (в целях упрощения чертежа линии отвода конденсата опущены).

Выбор fancoil

С учетом типологии применения в нашем случае необходимы горизонтальные встраиваемые fancoil. Поскольку в системе, где используется наружный воздух, fancoil ассимилируют только явное тепло, в режиме охлаждения необходимо, чтобы температура поверхности теплообменника никогда не опускалась ниже точки росы воздуха помещения.

Все это можно обеспечить, если организовать в fancoil циркуляцию воды с температурой от 10 до 150С, приготовляемой в пластинчатом теплообменнике, куда подается вода температурой от 9 до 140С от холодильной установки для питания воздухоохладителя кондиционера.

С целью не допустить вертикального расслоения, горячая вода, подаваемая в fancoil в зимний период, должна иметь температуру 50С. Как и охлажденная вода, в данном случае горячая вода температурой 50С будет производиться тем же пластинчатым теплообменником, в который в зимний период подается вода из котла температурой 80С, используемая для теплоснабжения кондиционера.
Для гарантии требуемой бесшумности, рабочие агрегаты должны выбираться по максимальным показателям звукового давления 35 dBA на минимальной скорости, которая, вероятно, будет применяться только при работе в ночной период.
В самом деле, в режиме охлаждения ночная нагрузка ограничена. В режиме отопления мощность агрегатов избыточна.
Выбранный поставщик оборудования производит fancoil с тангенциальным вентилятором, модели которого, подходящие по типоразмерам для рассматриваемого случая, имеют уровень звукового давления в пределах от 36 до 49 dBA на максимальной скорости (включаемой при работе в режиме охлаждения) и от 25 до 34 dBA на минимальной скорости.
Распределение воды по fancoil обеспечивается в контуре с инверсионным возвратом по трубопроводу, выполненному из черной стали с теплоизоляцией. Конденсат отводится по ПВХ-трубам подведенным к канализационному сливу каждого номера мотеля.

Должно быть предусмотрено:

  • 8 вентиляционно-конвекторных агрегатов размера 05;
  • 10 вентиляционно-конвекторных агрегатов размера 04;
  • 2 вентиляционно-конвекторных агрегата размера 06.

Кроме того, потребуются:

  • 18 комплектов - подающий короб + воздухораспределитель из анодированного алюминия с двойным рядом регулируемых решеток 200 х 600 мм для fancoil размеров 04 и 05;
  • 2 аналогичных комплекта 200 х 800 мм для fancoil размера 06.

А также:

  • 18 воздухозаборных решеток из анодированного алюминия для терминалов размеров 04 и 05;
  • 2 аналогичных решетки для терминалов размера 06.

У выбранных агрегатов максимальная потеря давления составляет около 6 кПа. Данный показатель следует учесть при закупке водяных насосов.

Выбор холодильной установки

Выбор холодильной установки производится по сумме нагрузок fancoil плюс нагрузка на воздухоохладитель - это примерно 51 кВт.

Чтобы обеспечить необходимое осушение воздуха, подбирается разность температур 9С - 14С.

Объемный расход воды, соответствующий такой разности температур, составляет 2,44 л/с, тогда как расчетная наружная температура 32С по сухому термометру (B.S.), то есть соответствует требованиям проекта по климатическим условиям эксплуатации объекта.

По проекту выбранный нами агрегат имеет мощность 54 кВт. Следовательно, он в состоянии гарантировать определенный запас мощности на случай, если климатические условия выйдут за рамки проектных значений (в условиях Паданской равнины это весьма вероятно). При этом агрегат потребляет 16,6 кВт, а его показатель СОР составляет 3,25. Потери нагрузки такой холодильной установки составляют 15 кПа, если объемный расход обрабатываемой воды находится на проектом уровне, то есть составляет 2,44 л/с.

Шум от агрегата в открытом пространстве на дистанции 10 м составляет 48 dBA. Такой показатель более чем приемлем, к тому же агрегат установлен на крыше технического помещения в западной части жилого корпуса мотеля, где никто его особо “слушать” не будет.

Выбор кондиционера

Кондиционер обработки первичного воздуха устанавливается снаружи. Имеет корпус, выполненный из панелей пераллюмана. Схема кондиционера приведена на рис. 4.

Кондиционер обеспечивает объемный расход воздуха 1000 л/с, при этом давление составляет 150 Па, что на этапе предварительного расчета является достаточным для проектируемой системы воздуховодов.

Схема системы (ее расчетные детали мы опустим, поскольку сути данной статьи они не касаются) приведена на рис. 5. Там же приведена схема распределения воды в сети fancoil (ее расчетные детали мы так же опустим; кстати, отметим, что для простоты изложения на рисунке опущена схема линий отвода конденсата).

Как представлено на рис. 6, воздухоохладитель должен снизить температуру воздуха с 32С относительной влажностью 50% до 14С относительной влажностью 94%, что обеспечивается холодной водой с параметрами 90С –140С.

На том же рисунке видно, что в режиме отопления воздух должен нагреваться от – 5С до 32С, тогда как увлажнитель должен обеспечить практически насыщенный воздух температурой 14С.

В калорифер подается вода, имеющая температуру 80С. Распределительная сеть та же, по которой в режиме охлаждения в воздухоохладитель подается охлажденная вода.

Рис. 6. Психрометрическая диаграмма работы кондиционера

Выбор насосов и теплообменника

Горячая вода, необходимая для отопления в зимний период, производится тепловым генератором, имеющим мощность 80 кВт. Генератор подключается к главному распределительному контуру (открываются отсекающие клапаны и закрываются отсекающие клапаны холодильной установки).

Следовательно, достаточно, если насосы главного контура будут рассчитаны на условия летней эксплуатации, которые являются наименее благоприятными.

Насосы должны быть рассчитаны на объемный расход воды 2,44 л/с с напором 150 кПа. Такое давление на этапе предварительного расчета системы представляется достаточным. Таким образом, мы должны остановить наш выбор на сдвоенном насосе соответствующей мощности.

Что касается распределения воды для fancoil, то главная сеть питает непосредственно пластинчатый теплообменник (по соображениям предосторожности теплообменник выбирался по сумме максимальных нагрузок fancoil, то есть на 36,7 кВт с водой температурой 9/14 С в первичном контуре и 10/15 С во вторичном). Вторичный контур теплообменника управляется трехходовым клапаном с фиксированной регулировкой на 10С. Из характеристик fancoil видно, что мощность насосов во вторичном контуре соответствует 1,752 л/с. То есть насосы для вторичного контура должны выбираться из указанного расчета мощности для напора 150 кПа, - эти характеристики на данном этапе представляются достаточными для обеспечения работы системы. Вновь наш выбор мы останавливаем на cдвоенном насосе, имеющем соответствующие показатели.

Выбор воздуховодов

Приточный воздуховод прокладывается в подвесном потолке по центральному коридору вместе с трубопроводом, подводящим воду на fancoil.

Подробная проработка сети воздуховодов, которая в целях обеспечения минимальной шумности эксплуатации была рассчитана на довольно малую скорость (4 м/с), не входит в задачу автора и, следовательно, рассмотрена здесь не будет.

Следует только отметить, что сеть воздуховодов в целом имеет ориентировочный вес 850 кг и общую площадь около 80 м2.

Расчетные потери давления составляют 150 Па. Воздуховоды выполняются из оцинкованной стали с изоляцией из пенополиуретана.

Сеть распределения воды

Холодильный агрегат размещается на крыше технической комнаты, в которой размещается тепловой пункт. Там же установлены насосы, теплообменники, расширительные баки и бак- аккумулятор главного контура распределения воды (емкостью около 750 л).

Общая протяженность трубопровода главного контура (с инверсионным возвратом) составляет около 30 м собственно главного контура (средний диаметр 2”) и примерно 160 м контура распределения воды на fancoil (средний диаметр 1-1/2”). Все линии имеют теплоизоляцию.

Как таковой сети отвода конденсата нет, поскольку к каждому терминалу подведена сливная ПВХ-труба диаметром 1”, выходящая непосредственно в ближайший сантехнический слив.

Смета расходов

В результате с учетом требований проекта и характеристик выбранного оборудования можно составить смету расходов по оборудованию вентиляционно-отопительной системы, приведенную в таблице 1.

По соображениям краткости изложения многие статьи указанной сметы (например, комплект управления, рабочая сила, трубопроводы) имеют весьма схематичное описание и выражены лишь итоговыми цифрами, полученными непосредственно от поставщиков изделий, работ и услуг. Нам представляется, что на этапе составления ориентировочной сметы более детальный анализ данных расходов смысла не имеет.

Заключение

Мы рассмотрели в данной статье пример вентиляционно-отопительной системы высшего качества, предназначенной для средних и малых мотелей в пригородной зоне. Приведенные данные позволяют рассчитать некоторые любопытные параметры, которые могут оказаться полезными при проектировании аналогичных структур. Это, в частности:

  • стоимость вентиляционно-отопительного оборудования на 1 м2 гостиничной площади (ит. лир) 110220000/370 = 298000 ит. лир/м2
  • стоимость вентиляционно-отопительного оборудования на 1 м3 гостиничной площади (ит. лир) 110220000/1040 = 106000 ит. лир/м3
  • стоимость вентиляционно-отопительного оборудования на 1 гостиничный номер (ит. лир) 110220000/20 = 5510000 ит. лир за номер.

Предложенная система сама по себе представляется нам вполне “богатой” (значительные объемы подаваемого наружного воздуха, применение на терминалах регулирующих трехходовых клапанов, карманные фильтры кондиционера первичного воздуха и проч.). Очевидно, однако, что и ее можно усовершенствовать.
Сметные расходы вырастут, если в силу особенностей здания потребуется организация инфраструктуры с четырьмя трубопроводами в системе fancoil.

В этом случае стоимость дополнительных работ, обусловленных необходимостью разделения контуров циркуляции fancoil, установки второй сети распределения воды, установки на терминал второго трехходового клапана, приведет к увеличению сметных расходов на 20 – 30 % в зависимости от особенностей вентиляционно-отопительной системы.

Джорджо Рекалькати
Перепечатано из журнала RCI №3/96
перевод с итальянского С.Н. Булекова


Примеры систем кондиционирования

01. Система кондиционирования воздуха на базе кондиционеров сплит-систем и система естественной вытяжной вентиляции жилых помещений

На рис. рассмотрен вариант автономного обеспечения внутренних температурных условий в жилых помещениях с использованием кондиционеров сплит-систем настенного типа. Достоинством автономных кондиционеров такого типа является простота установки и монтажа. Внутренний блок установлен на стене, на высоте h=2.5 м. Наружный блок - на балконе. Фреоновая трасса между внутренним и наружным блоками прокладывается вдоль стены в декоративных коробах. Конденсат, образующийся во внутреннем блоке при работе кондиционера в режиме охлаждения, выведен на улицу с помощью дренажного трубопровода.

Вентиляция жилых помещений осуществляется естественным путем. Приток свежего воздуха - через открытые окна. Вытяжка на улицу - через решетки, установленные на кухне и в санузле, далее - через вытяжные шахты. Для очистки воздуха на кухне используется кондиционер-очиститель.

Приток свежего воздуха - через открытые окна. Вытяжка на улицу - через решетки, установленные на кухне и в санузле, далее - через вытяжные шахты. Для очистки воздуха на кухне используется кондиционер-очиститель.

Применение

СКВ на базе кондиционеров сплит-систем может применяться в большом числе случаев:

  • В существующих зданиях для поддержания микроклимата в отдельных офисных помещениях или в жилых комнатах.
  • Во вновь строящихся зданиях, если поддержание оптимальных тепловых условий требуется в небольшом числе помещений, например в ограниченном числе "люксов" небольшой гостиницы.
  • Во вновь строящихся зданиях для отдельных комнат, тепловой режим в которых отличается от других помещений, например, в серверных, насыщенных тепловыделяющим оборудованием. Поскольку такие кондиционеры работают, как правило, на рециркуляцию, при необходимости подача в помещение свежего воздуха и удаление вытяжного воздуха выполняется отдельной системой приточно-вытяжной вентиляции.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

02. Система технической вентиляции на базе приточной установки и вытяжного крышного вентилятора
02

На рис.2 показан пример механической вентиляции жилых помещений коттеджа. Приточная вентиляционная установка обеспечивает допустимые метеорологические условия и санитарные нормы воздуха в помещениях согласно СНиП.

В своем составе приточная установка имеет:

  • Клапан с электрическим приводом на воздухозаборе
  • Фильтр для очистки воздуха от пыли
  • Электрический (или водяной) калорифер для нагрева воздуха в зимний период времени
  • Вентилятор
  • Систему автоматики с пунктом управления.
Применение

Все перечисленные элементы смонтированы в едином металлическом звукоизолированном корпусе. Такая компактная конструкция приточной установки позволяет монтировать ее в зоне подвесного потолка в обслуживаемом помещении. В данном примере рассмотрен вариант монтажа приточной установки на техническом этаже.

Обработанный воздух по сети воздуховодов поступает в обслуживаемое помещение через потолочные плафоны с регулятором расхода воздуха. Система вытяжной вентиляции решена с использованием крышного вентилятора. Аналогичные системы вентиляции смогут использоваться и в офисных помещениях при наличии подвесных потолков.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

03. Система кондиционирования воздуха на базе сплит-системы с приточной вентиляцией
03

На рис.3 показан пример кондиционирования магазина с использованием сплит-системы с приточной вентиляцией. Наружный (компрессорно-конденсаторный) блок устанавливается на улице на стене здания (или в техническом помещении в случае комплектации наружного блока центробежным вентилятором). Внутренний блок (включающий в свой состав фильтр, вентилятор, фреоновый охладитель, электронную панель управления, воздухонагреватель) монтируется в помещении за подвесным потолком.

Свежий воздух забирается с улицы и через термоизолированный воздуховод подается в смесительную камеру, где он смешивается с воздухом, забираемым из помещения. Затем воздушная смесь фильтруется и обрабатывается во внутреннем блоке в зависимости от заданного режима (охлаждение или нагрев). Далее обрабатываемый воздух поступает в обслуживаемые помещения по системе воздуховодов через воздухораспределительные решетки. При этом никак не нарушается дизайн интерьера, так как все оборудование монтируется за подвесным потолком. В интерьере остаются лишь изящные декоративные решетки для подачи воздуха. Между собой внутренний и внешний блоки соединяются фреоновым трубопроводом в изоляции.

Сплит-система с приточной вентиляцией, оснащенная электронной системой управления, поддерживает нужные параметры микроклимата в любое время года. Летом воздуховод охлаждается, и в помещении поддерживается заданная температура. Осенью и весной кондиционер переключается в режим "теплового насоса" и эффективно подогревает воздуховод без включения калорифера.Если температура наружного воздуха опускается ниже нуля, включается дополнительный калорифер. Электронный модуль управления калорифера позволяет плавно регулировать его мощность в зависимости от температуры наружного воздуха, что обеспечивает минимальное потребление электроэнергии. Для создания воздушного баланса в помещениях магазина предусмотрена вытяжная вентиляция с применением канального вентилятора

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

04. Система кондиционирования воздуха на базе чиллера и фанкойлов, совмещенная с центральным отоплением, и система естественной вентиляции административного здания

04

В данной системе кондиционирования источником холодоснабжения является чиллер, установленный на крыше.

Местные неавтономные кондиционеры-фанкойлы напольной установки обеспечивают оптимальные температурные условия в помещениях административного здания. Фанкойлы включают в себя 2 теплоообменника и подключены по четырехтрубной схеме, что позволяет использовать их в зимнее время как приборы центрального отопления. Четырехтрубная установка предполагает круглогодичное использование фанкойла. В период охлаждения в основной теплообменник поступает холодная вода из чиллера, в межсезоньетеплая вода также поступает от чиллера, работающего в режиме теплового насоса; в отопительный (зимний) сезон через дополнительный теплообменник циркулирует горячая вода (с температурой теплоносителя 70-95 градусов) от системы центрального отопления. Воздухообмен осуществляется за счет естественной вытяжной вентиляции. Чиллер снабжает хладоносителем фанкойлы многоэтажного здания. Горячая вода поступает в систему из городской теплосети через индивидуальный тепловой пункт в подвале.

Воздухоохлаждаемый чиллер с осевыми вентиляторами установлен на крыше. Такой вариант установки является наиболее дешевым, поскольку не требуется места в здании или во дворе. При этом выбрана установка с малошумными осевыми вентиляторами, чтобы их шум не проникал в обслуживаемое и рядом стоящие здания. Насосная станция, обеспечивающая циркуляцию хладоносителя в системе "чиллер-фанкойлы", также установлена на крыше.

Применение

Представленная система кондиционирования широко применяется, как правило, при строительстве или реконструкции здания целиком или хотя бы отдельного этажа в гостиницах, офисах, медицинских учреждениях и школах.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

05. Система кондиционирования воздуха на базе чиллера и фанкойлов, и система принудительной вентиляции офисных помещений
05

На рис. 5 показан пример комплексной системы кондиционирования для достаточно распространенного - офисного типа общественных зданий. Основное оборудование расположено на техническом этаже.

Для приготовления холодной воды, поступающей в воздухоохладители центрального кондиционера и фанкойлы, используется чиллер. Воздушное охлаждение конденсатора этой моноблочной холодильной машины осуществляется радиальным вентилятором. Воздух для охлаждения конденсатора подается и отводится по воздуховодам, проходящим через кровлю здания. В чиллер встроена гидравлическая группа, перекачивающая хладоноситель, в качестве которого используется вода. В чиллере предусмотрено переключение на режим теплового насоса, и поэтому в холодные дни, когда система отопления еще не работает, в воздухоохладитель центрального кондиционера и теплообменники фанкойлов подается вода с температурой около 50 градусов для обогрева приточного воздуха, поступающего в дальнейшем в помещения.

Фанкойлы, аналогичные внутреннему блоку сплит-системы, работают на рециркуляции воздуха в помещении и осуществляют индивидуальное регулирование теплового режима в каждом помещении.

Центральный кондиционер забирает воздух с улицы через жалюзийную решетку, установленную на фасаде технического этажа.

В состав центрального кондиционера, кроме двух ступеней воздушного фильтра (ячейкового и карманного), входят воздухонагреватель, воздухоохладитель и вентиляторная секция, после которой установлены шумоглушители. Для холодного периода года в кондиционере предусмотренповерхностный увлажнитель воздуха. Такой воздухоувлажнитель способен обеспечить требуемую влажность в помещениях в широком диапазоне. Кроме того, в сравнении с оросительной камерой, он компактнее и разбрызгиватели не требуют поддержания избыточного давления, как форсунки в оросительной камере. В теплый период года влажность подаваемого воздуха снижается за счет выпадения конденсата на теплообменной поверхности фанкойлов.

Приточный воздух от центрального кондиционера по сети воздуховодов самостоятельными каналами подается в помещения на каждый этаж через приточные решетки. Вытяжной воздух удаляется с каждого этажа по сети воздуховодов через решетки в стенах и затем вытяжным радиальным вентилятором выбрасывается в атмосферу.

На рисунке условно не показаны перегородки между приточной и вытяжной вентиляционными камерами и чиллером.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

06. Система кондиционирования воздуха на базе чиллера и фанкойлов, и система приточно-вытяжной принудительной вентиляции здания гостиницы

06

На рис. 6 рассмотрен вариант установки центрального кондиционера в подвале, а чиллера и насосной станции - на кровле здания. В данной системе используются фанкойлы скрытой установки в фальшпотолке.

Наружный воздух поступает в кондиционер через воздухозаборную шахту на высоте 2 метров от уровня земли.

Охлажденный (летом) или нагретый (зимой) в кондиционере воздух по системе воздуховодов подается к каждому фанкойлу. С помощью фанкойлов обеспечиваетсяиндивидуальное поддержание заданной температуры в каждом помещении. В свою очередь теплообменник центрального кондиционера снабжается охлажденной водой (или этиленгликолем) от чиллера. Циркуляцию воды в системе "чиллер-фанкойлы-теплообменник центрального кондиционера" обеспечивает насосная станция, так же, как и чиллер, установленная на кровле здания, и регулирует индивидуальный тепловой режим в каждом помещении.

Фанкойлы в данном случае работают на смеси наружного и рециркуляционного воздуха. Удаление воздуха из санузлов и умывальных комнат осуществляется по сети воздуховодов централизованно крышным вентилятором, установленным на кровле здания.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

07. Система кондиционирования воздуха зала кинотеатра на базе центрального приточно-рециркуляционного кондиционера
07

Общественное здание "зального типа" оборудовано центральной системой кондиционирования воздуха на базе центрального кондиционера и чиллера. Соотношение расходов рециркуляционного и приточного воздуха - переменное и зависит от времени года (зима - лето). Приточно-рециркуляционный кондиционер, вентиляционное оборудование и чиллер для подготовки хладоносителя установлены в подвале и отделены от зала строительными конструкциями. С помощью насосной группы, встроенной в чиллер, хладоноситель подается к воздухоохладителям.

В качестве открытой градирни в системе оборотного водоснабжения для охлаждения конденсаторов чиллера используется фонтан. Приток воздуха в зал осуществляется центральным кондиционером через потолочные воздухораспределители. Вытяжка воздуха из зала естественная, через шахту, установленную на кровле.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

08. Система кондиционирования воздуха технологического помещения на базе прецизионного шкафного кондиционера

08

В обслуживаемом помещении установлено технологическое оборудование со значительными выделениями тепла. Для точного поддержания заданной температуры и влажности внутреннего воздуха используется шкафный автономный кондиционер.

Применена система естественной вентиляции. При необходимости может обеспечиваться подмес свежего воздуха в кондиционере (в незначительных объемах). Внутренний блок кондиционера установлен в соседнем техническом помещении (может быть установлен непосредственно в обслуживаемом помещении).

Конструкция фальш-потолка в помещении позволила проложить сеть воздуховодов в полу и осуществить раздачу обработанного в кондиционере воздуха непосредственно под стойки технологического оборудования. Рециркуляционный воздух забирается из верхней зоны помещения и так же по сети воздуховодов поступает на обработку во внутренний блок кондиционера. Конденсаторный блок воздушного охлаждения расположен на стене с наружной стороны здания.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

09. Система кондиционирования воздуха выставочного зала на базе центрального кондиционера с утилизацией тепла вытяжного воздуха в перекрестноточном теплообменнике

Оптимальные параметры в выставочном зале поддерживаются с помощью центрального кондиционера.

Центральный кондиционер включает в свой составдополнительную секцию вытяжного вентилятора, а также систему утилизации тепла вытяжного воздуха в перекрестноточном теплообменнике. При этом секции самого кондиционера и вытяжной вентиляции размещаются в два яруса. Источником холодоснабжения центрального кондиционера служитчиллер, установленный на кровле.

Насосная станция, также установленная на кровле здания, перекачивает хладоноситель по системе чиллер-теплообменник кондиционера. Воздух поступает в выставочный зал через напольные воздухораспределители и удаляется через потолочные плафоны по системе воздуховодов с помощью вытяжной вентиляционной установки. Удаляемый из помещения воздух отдает свое тепло приточному воздуху в перекрестноточном теплообменнике.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

10. Система кондиционирования воздуха операционной на базе приточно-вытяжного автономного кондиционера

10

Для кондиционирования операционной использован моноблочный приточно-вытяжной автономный кондиционер. В конструкции кондиционера использована двухярусная компоновка. Кондиционер с фреоновым воздухоохладителем расположен в нижнем ярусе.

Наружный воздух поступает в кондиционер, охлаждается или нагревается в нем, в зависимости от температуры наружного воздуха, проходит две ступени очистки и по системе воздуховодов поступает в помещение операционной. Раздача воздуха осуществляется в верхнюю зону через специальные решетки, оснащенные специальными фильтрами тонкой очистки. Вытяжные решетки в помещениях установлены в верхней и нижней зонах операционной для удаления из нее легких и тяжелых наркозных газов. По сети воздуховодов вытяжной воздух поступает в секции кондиционера, расположенные во втором ярусе.

Холодильная машина кондиционера имеет воздухоохлаждаемый конденсатор. Для охлаждения конденсатора используется воздух вытяжной системы с дополнительным подмесом наружного воздуха.

Удаление вытяжного воздуха осуществляется в атмосферу через специальную шахту на кровле здания.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

11. Система вентиляции административного здания на базе поэтажных приточно-вытяжных вентиляционных установок с утилизацией тепла вытяжного воздуха

11

Система приточно-вытяжной вентиляции двухэтажного административного здания включает приточно-вытяжные агрегаты, установленные на каждом этаже.

В своем составе вентиляционные агрегаты (установки) содержатвоздухо-воздушный теплообменник (теплоутилизатор), в котором в холодный период года тепло от вытяжного воздуха передается приточному воздуху. Кроме теплоутилизатора, приточного и вытяжного вентиляторов, в вентиляционных агрегатах установленывоздушные фильтры для очистки от пыли обоих потоков воздуха на входе в установку и водяной воздухонагреватель для дополнительного подогрева приточного воздуха. В агрегатах есть также приемный и рециркуляционный воздушные клапаны для регулирования расходов воздуха в каждом потоке. Воздухозабор осуществляется с фасада здания, обращенного в сторону зеленой зоны, вытяжной воздух выбрасывается на другой, глухой (не имеющий окон) фасад.

Для раздачи приточного воздуха в помещении и удаления вытяжного воздуха использованы приточные и вытяжные плафоны.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

12. Система кондиционирования воздуха на базе крышных кондиционеров и система естественной вытяжной вентиляции торгового зала

12

Автономный крышный кондиционер установлен на кровле одноэтажного здания магазина. Кондиционер работает на смеси наружного и рециркуляционного воздуха. Необходимое количество наружного воздуха поступает в смесительную камеру, где перемешивается с воздухом, забираемым из помещения.

Общее количество воздуха проходит через фреоновый воздухоожладитель и поступает в помещение через систему воздуховодов и воздухораспределителей. Удаление вытяжного воздуха осуществляется системой естественной вытяжной вентиляции через крышный дефлектор.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

13. Система кондиционирования воздуха спортивного зала на базе крышных кондиционеров с секцией вытяжного вентилятора
13

Автономные крышные кондиционеры установлены на кровле одноэтажного здания и работают на смеси наружного и рециркуляционного воздуха. Кондиционеры укомплектованыдополнительным центробежным вентилятором для подключения вытяжной вентиляции.

Такая конструкция кондиционеров позволяет одновременно решить задачу вентиляции и кондиционирования воздуха спортивного зала. Подача кондиционированного воздуха осуществляется через настенные вентиляционные решетки; удаление вытяжного воздуха - через потолочные плафоны.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

14. Система кондиционирования воздуха на базе кондиционера сплит-системы с приточной вентиляцией и система естественной вытяжной вентиляции коттеджа

-14

Кондиционер сплит-системы с приточной вентиляцией состоит из внутреннего (испарительного) и наружного (компрессорно-конденсаторного) блоков. В данном примере использован компрессорно-конденсаторный блок с центробежным вентилятором. Он размещен на техническом этаже. Для его охлаждения воздух забирается с улицы.

Внутренний блок установлен на техническом этаже и работает на смеси наружного и рециркуляционного воздуха. Охлаждение воздуха летом осуществляется с помощью фреонового воздухоохладителя, а подогрев воздуха зимой - с помощью водяного (или электрического) калорифера. В данном случае используется водяной калорифер, работающий в период отопления от газового котла. Забор наружного воздуха в кондиционер и раздача его по помещениям осуществляются по сети воздуховодов. Воздух для охлаждения конденсатора подается центробежным вентилятором по системе воздуховодов.

Для компенсации приточного воздуха из помещений санузлов и кухни предусмотрена вытяжная вентиляция.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

15. Система кондиционирования воздуха на базе чиллера-фанкойлов и приточно-вытяжная установка с утилизацией тепла вытяжного воздуха коттеджа
15

Оборудование систем кондиционирования и вентиляции расположено на техническом этаже. В системе кондиционирования используется чиллер с воздушным охлаждением конденсатора. Охлаждающий воздух подается в конденсатор центробежным вентилятором по системе воздуховодов.

В жилых помещениях расположены вентиляторные доводчики (фанкойлы) напольного типа вертикального исполнения. Они осуществляют индивидуальную регулировку температуры в помещении. Система обвязки фанкойлов двухтрубная, но в зимний (отопительный) период времени предусмотрено их переключение от чиллера на индивидуальный газовый котел, установленный в отдельном помещении.

Зимой фанкойлы работают как радиаторы отопления.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

Основные строительные нормы и правила устройства систем кондиционирования и вентиляции

Основные строительные нормы и правила устройства систем кондиционирования и вентиляции

Проектирование систем кондиционирования и вентиляции основано на строительных нормах и правилах (СНиП), утвержденных Госстроем России или Минстроем России. При проектировании систем кондиционирования воздуха и вентиляции используются следующие основные строительные и санитарные нормы:

СНиП 2.01.01-82 - Строительная климатология и геофизика

Информация о климатических условиях конкретных территорий.

СНиП 2.04.05-91* - Отопление, вентиляция и кондиционирование воздуха

Настоящие строительные нормы следует соблюдать при проектировании отопления, вентиляции и кондиционирования воздуха в помещениях зданий и сооружений (далее - зданий). При проектировании следует также соблюдать требования по отоплению, вентиляции и кондиционированию воздуха СНиП соответствующих зданий и помещений, а также ведомственных нормативов и других нормативных документов, утвержденных и согласованных с Госстроем России.

Настоящие нормы не распространяются на проектирование:

  • Отопления, вентиляции и кондиционирования воздуха убежищ, сооружений, предназначенных для работ с радиоактивными веществами, источниками ионизирующих излучений, объектов подземных горных работ и помещений, в которых производятся, хранятся или применяются взрывчатые вещества.
  • Специальных нагревающих, охлаждающих и обеспыливающих установок и устройств для технологического и электротехнического оборудования, систем пневмотранспорта и пылесосных установок
  • Печного отопления на газообразном и жидком топливе
СНиП 2.01.02-85* - Противопожарные нормы

Настоящие нормы должны соблюдаться при разработке проектов зданий и сооружений. Настоящие нормы устанавливают пожарно-техническую классификацию зданий и сооружений, их элементов, строительных конструкций, материалов, а также общие противопожарные требования к конструктивным и планировочным решениям помещений, зданий и сооружений различного назначения.

Настоящие нормы дополняются и уточняются противопожарными требованиями, изложенными в СНиП части 2 и в других нормативных документах, утвержденных или согласованных Госстроем.


СНиП II-3-79* - Строительная теплотехника

Настоящие нормы строительной теплотехники должны соблюдаться при проектировании ограждающих конструкций (наружных и внутренних стен, перегородок, покрытий, чердачных и междуэтажных перекрытий, полов, заполнений проемов: окон, фонарей, дверей, ворот) новых и реконструируемых зданий и сооружений различного назначения (жилых, общественных, производственных и вспомогательных промышленных предприятий, сельскохозяйственных и складских, с нормируемыми температурой или температурой и относительной влажностью внутреннего воздуха).

СНиП II-12-77 - Защита от шума

Настоящие нормы и правила должны соблюдаться при проектировании защиты от шума для обеспечения допустимых уровней звукового давления и уровней звука в помещениях на рабочих местах в производственных и вспомогательных зданиях и на площадках промышленных предприятий, в помещениях жилых и общественных зданий, а также на селитебной территории городов и других населенных пунктов.

СНиП 2.08.01-89* - Жилые здания

Настоящие нормы и правила распространяются на проектирование жилых зданий (квартирных домов, включая квартирные дома для престарелых и семей с инвалидами, передвигающимися на креслах-колясках, в дальнейшем тексте - семей с инвалидами, а также общежитий) высотой до 25 этажей включительно.

Настоящие нормы и правила не распространяются на проектирование инвентарных и мобильных зданий.

СНиП 2.08.02-89* - Общественные здания и сооружения

Настоящие нормы и правила распространяются на проектирование общественных зданий (высотой до 16 этажей включительно) и сооружений, а также помещений общественного назначения, встроенных в жилые здания. При проектировании помещений общественного назначения, встроенных в жилые здания, следует дополнительно руководствоваться СНиП 2.08.01-89* (Жилые здания).

СНиП 2.09.04-87* - Административные и бытовые здания

Настоящие нормы распространяются на проектирование административных и бытовых зданий высотой до 16 этажей включительно и помещений предприятий. Настоящие нормы не распространяются на проектирование административных зданий и помещений общественного назначения.

При проектировании зданий, перестраиваемых в связи с расширением, реконструкцией или техническим перевооружением предприятий, допускаются отступления от настоящих норм в части геометрических параметров.

СНиП 2.09.02-85* - Производственные здания

Настоящие нормы распространяются на проектирование производственных зданий и помещений. Настоящие нормы не распространяются на проектирование зданий и помещений для производства и хранения взрывчатых веществ и средств взрывания, подземных и мобильных (инвентарных) зданий.

СНиП 111-28-75 - Правила производства и приемки работ

Пусковые испытания смонтированных систем вентиляции и кондиционирования проводятся в соответствии с требованиями СНиП 111-28-75 "Правила производства и приемки работ" после механического опробования вентиляционного и связанного с ним энергетического оборудования. Целью пусковых испытаний и регулировки систем вентиляции и кондиционирования является установление соответствия параметров их работы проектным и нормативным показателям.

До начала испытаний установки вентиляции и кондиционирования должны непрерывно и исправно проработать в течение 7 часов.

При пусковых испытаниях должны быть произведены:
  • Проверка соответствия параметров установленного оборудования и элементов вентиляционных устройств, принятым в проекте, а также соответствия качества их изготовления и монтажа требованиям ТУ и СНиП.
  • Выявление неплотностей в воздуховодах и других элементах систем
  • Проверка соответствия проектным данным объемных расходов воздуха, проходящего через воздухоприемные и воздухораспределительные устройства общеобменных установок вентиляции и кондиционирования воздуха
  • Проверка соответствия паспортным даннымвентиляционного оборудования по производительности и напору
  • Проверка равномерности прогрева калориферов. (При отсутствии теплоносителя в теплый период года проверка равномерности прогрева калориферов не производится)

В ряде случаев при проектировании кондиционирования и вентиляции производственных помещений (фармацевтические и лечебные учреждения, животноводческие и птицеводческие здания и сооружения для хранения и переработки сельскохозяйственной продукции, теплицы и парники, здания с герметизированными помещениями для точных производств и электроники, предприятия легкой, пищевой, мясной, рыбной и молочной промышленности и холодильники) отсутствуют необходимые для проведения расчетов газовыделений исходные данные о технологическом процессе и оборудовании.

Поэтому иногда не представляется возможным установить расчетным путем, например, количество вредных веществ, выделяющихся в воздух производственных помещений. В этом случае в технических проектах, в качестве первого приближения, возможно применение ведомственных нормативных документов.

"Мир Климата - Заказчику". Спецвыпуск, февраль 2001 года. Ассоциация предприятий индустрии климата - АПИК.

Конструктор сайтов
Nethouse